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TEN

Confidential Smart Contracts for Ethereum

/TENː/

�. 天 (Japanese) Heaven; sky; the celestial;

�. The Encrypted Network

V1.0.0, November 2025 Note: Some diagrams will refer to the former name (Obscuro)

James Carlyle, Tudor Malene, Cais Manai, Neal Shah, Gavin Thomas, Roger Willis; with significant additional

contributors.

Abstract

We present TEN, a next-generation Ethereum Layer 2 rollup protocol that introduces data confidentiality,

computational privacy, and resistance to Maximal Extractable Value (MEV) by leveraging hardware-based

Trusted Execution Environments (TEEs).

TEN represents a major step forward in decentralized system design by reintroducing data access controls

— a foundational feature of Web2 that Web3 largely abandoned in favor of radical transparency. Early

computing was local: users interacted with isolated desktop machines. The internet changed that, enabling

shared data and remote computation — but always gated by fine-grained access control. Platforms like

Facebook and Amazon thrived under this model. Web3, in its push for openness and composability,

discarded controlled data visibility - making it nearly impossible to support sensitive, real-world

applications.

By integrating programmable encryption, TEEs, and an Ethereum-compatible execution environment, TEN

reintroduces access control into a fully decentralised setting. This enables encrypted, autonomous, and

composable smart contracts that preserve user and application privacy without sacrificing decentralisation

or composability. The protocol supports private shared state, confidential transactions, and short

withdrawal periods, while maintaining the simplicity and performance characteristics of Optimistic rollups.

Importantly, TENʼs trust model does not require perpetual belief in any single hardware vendor. If a TEE is

compromised or a manufacturer behaves maliciously, the system gracefully degrades into a transparent

blockchain, preserving ledger integrity while forfeiting privacy—a fallback consistent with the ethos of

credible neutrality.

TEN is not just a technical improvement; it represents a shift in what Web3 can become. With support for

autonomous AI agents, composable encrypted dApps, and robust MEV protection, TEN unlocks

applications previously thought infeasible in decentralised contexts. In doing so, TEN closes the gap

between Web2's functionality and Web3's promise—offering the best of both worlds, only better.

Motivation

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/appendix#contributors
https://ethereum.org/en/developers/docs/mev/
https://en.wikipedia.org/wiki/Trusted_execution_environment
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Public blockchains have come a long way since the explosive growth of 2020–2021, when DeFi and NFTs

broke into mainstream awareness. At their peak, DeFi protocols attracted over $100 billion in total value

locked, while NFT marketplaces exceeded $10 billion in volume. These early use-cases validated the

promise of programmable value - but also exposed a critical flaw: the complete absence of data access

control.

Transparency, once celebrated as a virtue, has become a liability. On-chain activity today remains fully

public: every balance, transaction, strategy, and piece of logic is visible to everyone - including competitors,

adversaries, and MEV bots. This design made sense for verifying Bitcoin payments, but not for building

real-world applications.

If you analyze any successful digital application - Netflix, WhatsApp, Spotify, Revolut, even mobile games -

youʼll find one thing in common: they all rely on access control. Not just to provide privacy, but to function.

A bank wouldnʼt work if everyone could read and manipulate every account. Games collapse if opponents

can see your position. Spotify's business model fails if anyone can stream anything for free.

Yet, blockchains donʼt have that. Smart contracts today can define who can write data, but they cannot

restrict who can read it. Every view() function leaks everything. Every NFT, position, and strategy is

exposed. This makes it nearly impossible to build viable applications in Web3 beyond speculation.

TEN is a new kind of Ethereum Layer 2 rollup that introduces Smart Transparency - a paradigm where smart

contracts not only enforce rules of computation, but also enforce rules of data access. TEN leverages

Trusted Execution Environments (TEEs) - hardware-based enclaves already trusted by banks, cloud

providers, and mobile platforms - to enable encrypted state, private view functions, and programmable

access control at the smart contract level.

This lack of access control doesnʼt just limit user privacy - it leaves the entire ecosystem vulnerable.

Without the ability to hide intent or protect positions, users become easy targets for extractive behavior.

Nowhere is this more evident than in the rise of Maximal Extractable Value (MEV) - a growing class of

attacks where adversaries exploit transaction visibility and ordering for profit.

MEV has become a $2+ billion-a-year drain on users, with techniques like sandwiching, liquidation sniping,

and time-bandit reorgs degrading user experience and undermining trust in blockchain infrastructure. In

this context, the need for encrypted computation is no longer theoretical. It is existential.

TEN addresses this not only by mitigating MEV, but by radically expanding whatʼs possible on-chain. From

fully confidential DeFi protocols and dark pools to AI-native gaming and autonomous agent marketplaces,

TEN enables use-cases previously thought incompatible with blockchain. By supporting encrypted,

composable dApps while preserving Ethereum compatibility, TEN opens a new chapter in Web3 - one

where trustlessness, privacy, and programmability are no longer mutually exclusive.

Differentiators

TEN leverages Ethereum, a public blockchain with the greatest adoption, legitimacy, security, and

liquidity, as a base layer to handle security and data availability and manage the inflow and outflow of

value.

TEN keeps all transactions and the internal state of application contracts encrypted and hidden, and

so provides a credible solution to MEV.
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By providing an Ethereum Virtual Machine (EVM) compatible VM, deploying existing contracts to TEN

with minimal change may be possible.

TEN is trustless and decentralised. It takes processing from the Ethereum Layer-1 (L1) and allows

lower transaction costs similar to other Layer-2 (L2) networks.

TEN leverages TEEs for privacy but not for integrity and is not affected by the limitations of

hardware-based confidential computing.

TEN guarantees quick finality by synchronising the publishing of rollups to the cadence of the L1

blocks.

TEN introduces a novel mechanism to allow application developers to balance the need for user data

privacy (and MEV prevention) with the need to deter long-term illegal behaviour.

Challenges

As well as preserving the confidentiality of user data, the other main goals of this protocol are to be fully

permissionless, decentralised and a generic smart-contract execution engine compatible to the greatest

extent with the EVM.

In this section, we enumerate the key challenges we faced when designing the TEN protocol.

Relying on hardware-based TEEs for applications where significant value depends on the security of

the hardware poses several challenges. A system designed to manage value should not allow an

attacker capable of compromising secure hardware to take ownership of the value under any

circumstances. In other words, the ledger's integrity should not depend on TEEs being 100%  hack-

proof or the hardware manufacturer being 100%  trustworthy. TEN uses the security of Ethereum

combined with game theory to detect and correct eventual TEE hacks.

A system where everything is encrypted all the time is not usable. There must be a way for users to

query their data or prove it to third parties. Additionally, an existing application contract that reveals

internal state (such as the balanceOf(address) function of the ERC-20 standard used to look up

anyone's holding) need to be considered carefully; since while TEN would prevent the state of the

contract from being visible, the functions might not.

Another critical challenge for this protocol is the prevention of MEV. Because user transactions and

execution are not visible to TEN nodes, one might naively assume that this problem is solved.

Unfortunately, that is not strictly true since aggregators might gain useful information through side-

channels and use that to extract value. For example, an aggregator might own some accounts and

submit transactions to them in critical moments and then query for results. TEN addresses this by

introducing delays in key moments to prevent aggregators from performing replay-attacks which can

generally be used for side-channels.

A privacy-preserving platform should consider illegal usage and design mechanisms to help

application developers avoid and prevent it. An important insight in this direction is that the value of

confidentiality decays over time, to the point where transactions may just be of historical interest. For

many transactions involving value, it is critical that they are not public when processed and cannot be

front-run, but for others, they are price-sensitive for a longer period. TEN uses this insight and

implements a flexible policy for delayed transaction revelation. The knowledge that transactions
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become public in the future is a deterrent for users to engage in criminal behaviour because law-

enforcement agencies will eventually catch up. Alternative options have been considered.

One crucial challenge of such a system is ensuring that some catastrophic event cannot leave all the

value locked. The mechanism that prevents this is covered in the Threat-Model analysis.

High transaction fees are one of the main barriers to entry for Ethereum. TEN addresses this by

introducing a novel approach to calculate fees based on the actual costs of the running nodes.

Technical Background

This section briefly covers the key technologies on which TEN relies.

We recommend reading through the "Trusted Execution Environment" section because it introduces

concepts and notations used throughout the paper.

Ethereum

Ethereum is a public, transparent, permissionless blockchain system and network of nodes, supporting

account-based smart contracts, where business logic can be deployed as code to create an immutable and

uncensorable contract which can hold and control the flow of value. The Ethereum mainnet went live in

2015 and is the most mature and adopted smart contract system. Read more on the official website.

Trusted Execution Environment

A TEE is a secure area of a central processor or CPU. It guarantees code and data loaded inside to be

protected with respect to confidentiality and integrity as it is processed. TEN focuses initially on Intel's SGX,

based on the team's 5 years of experience developing a confidential computing product with it. The TEE

data cannot be read or processed outside the enclave, including processes running at higher privilege

levels in the same host.

An SGX-capable CPU has two device root keys that are fused into it by the manufacturer, the Root

Provisioning Key (RPK) and the Root Sealing Key (RSK). The RPK is known to Intel and used to prove a CPU

is genuine via remote attestation and the RSK is not known to any entity outside the CPU. These keys can

be used to create other CPU specific keys. In this whitepaper, we will refer to them as the Enclave Key (EK).

Processes and users outside the enclave encrypt data that is only meant for the enclave using keys

generated inside the enclave. When the enclave wishes to store data, it is again encrypted so that the host

(the server which stores the data) is not able to see it.

Attestation allows user verification that the enclave is running on a genuine SGX capable CPU that is

properly-patched, and the application running inside the enclave matches a particular codebase and is un-

tampered before the user shares confidential data with it. This allows the user or someone trusted by them

to audit the code of the application in advance and know for sure that only that code will see that data.

In TEN's case, the SGX application is a virtual machine largely compatible with the EVM, allowing execution

of existing Ethereum smart contracts, along with the rollup functionality necessary to interact with the L1

contract.

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/appendix#alternative-revelation-options
file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/threat-model
https://ethereum.org/en/
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The Trusted Computing Base (TCB) is defined as the set of computing technologies that must be working

correctly and not be malicious or compromised for a security system to operate. The TCB is composed of

the hardware TCB (the CPU) and the software TCB (the CPU microcode and the application). Attestation

provides to the Verifier a report containing the details about all the components of a TCB, like CPU type, the

SGX security version number (CPUSVN) and the version of the application.

An attestation report that was deemed as secure could become insecure if a vulnerability is disclosed. At

that moment, the system needs to be re-secured, a process which is called TCB recovery.

This whitepaper refers to the Attestation Report (AR) as a generic object that describes the TCB and also

contains an encryption key referred to as the Attestation Key (AK), and as Attestation Constraints (AC) to a

set of constraints that a report must satisfy to be considered secure at a point in time. The constraints will

change over time as vulnerabilities are discovered, the software is upgraded with new features or to keep

up with the evolution of the EVM. The TEN nodes will have to upgrade to continue participating in the

network.

Any message originating from an enclave can be signed with the AK. This is a guarantee for the recipient

that it must have originated only inside a valid enclave.

The diagram below is a conceptual high-level overview of the mechanism by which a TEE manufacturer and

a group of security auditors propagate trust to the output of the computing performed inside the TEE.

A signature from the EK attests that a signed data packet originates from a genuine CPU. That is not

enough for the output of typical confidential computing use cases, as clients have to know what program

runs inside the CPU and what firmware.

To solve this problem, the TEE generates a new key (the AK) derived from the RSK, which is then included in

the attestation report, together with the software and hardware versions, and signs this report with the EK.
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By this mechanism, data packets signed with the AK include the trust from the genuine CPU and the hash

of the program attested by the group of auditors.

Rollups

The two approaches to scaling L1 blockchains are to improve the capacity of the blockchain, or move

processing away from it but tie back to it.

The first approach can make the blockchain more centralised, as the cost of node infrastructure increases

(limiting the number of participants able to afford it) or the number of nodes involved in consensus

decreases. A variation splits the accounts into shards, allowing validation to happen in parallel, and this is

the current approach on the Eth2 roadmap.

The second approach is to allow users to engage with contracts on a second-layer network of nodes, where

the majority of the processing work is undertaken. One example of the second approach is rollups, where

the L2 transactions are verified and posted in compressed form in a single rollup transaction to the L1

blockchain. There is an L1 contract which processes deposits and withdrawals. In zero-knowledge rollups,

L1 nodes can undertake a lightweight process of verification of the correctness of activity on the L2

network, whereas in optimistic rollups, the L2 transactions submitted are assumed to be correct, but

another L2 node may disprove them during a challenge window.

High Level Design

TEN is designed as an L2 protocol, where user activity is moved off-chain from the L1, and it follows the

increasingly common rollup pattern to store transaction data on the L1 chain to achieve censorship-

resistant data availability. This is leading to proposals to reduce calldata storage costs on Ethereum. Most

rollup implementations exist to provide scalability for L1 networks, but the prime objective of TEN is to

provide confidentiality. The rollups contain the entire encrypted transaction data.

L2 networks have a unidirectional dependency on an L1 network: while the L2 network relies on the L1

network to provide an immutable and public record of transaction data and to provide censorship

resistance, liveness and availability, the L1 network is unaware of any individual L2 network. L2 submitted

rollups are just normal L1 transactions.

The following diagram shows the interactions between the two decentralised networks, Ethereum (L1) and

TEN (L2): TEN is formed of Nodes called Aggregators, who compete to process user transactions, roll them

up, and submit for inclusion in Ethereum blocks. Ethereum, through its protocol, leverages its own nodes to

produce Ethereum blocks containing, amongst other things, the submitted TEN rollups.

https://notes.ethereum.org/@vbuterin/data_sharding_roadmap
https://vitalik.ca/general/2021/01/05/rollup.html
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On the bottom right, this diagram also depicts the state of a simple rollup chain as it is found in the

sequential L1 blocks.

L1 Network

On the L1 network there are several regular Ethereum contracts, referred to as Management Contracts.

Note: the L1 design is covered in more detail in L1 Contracts.

Network Management

This contract is the gatekeeper for the protocol. Any TEN node wishing to join the network will have to

interact with this contract and prove it is valid. This contract will also manage the TEE attestation

requirements and will be able to verify attestation reports.

It will also manage the stake of the participants able to submit rollups known as Aggregators.

Note: The stake is a piece of the game-theory puzzle that ensures that TEN participants have the right

incentives to follow the protocol.

Rollup Management

This module accepts rollups submitted by L2 nodes and includes them in the rollup-chain structure. It

works together with the bridge in processing withdrawal requests from users.

TEN Bridge

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/l1-contracts
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This contract is very important for the solution's security since it will protect all liquidity deposited by

Ethereum end-users, and reflected in the confidential TEN ledger.

L2 Network

The goal of the L2 design is to create a fair, permissionless, and decentralised network of nodes with valid

TEEs who cannot see the transactions they are processing while collaborating to manage a ledger stored as

rollups in the L1. The ledger should preserve its integrity even in the face of catastrophic TEE hacks.

All TEN nodes have to go through the attestation process with the Network Management contract before

receiving the shared secret and participating.

Note: the shared secret is covered in the cryptography section.

{%  include_relative aggregators-verifiers.md %} {%  include_relative rollup-data-structure.md %}

Consensus - Proof of Block Inclusion

TEN uses a novel decentralised round-based consensus protocol based on a fair lottery and

synchronisation with the L1, designed explicitly for L2 rollups, called Proof Of Block Inclusion (POBI). It

solves, among others, the fair leader election problem, which is a fundamental issue that all decentralised

rollup solutions have to address. POBI is inspired by Proof Of Elapsed Time.

High-Level Description

The high level goals of the POBI protocol are:

�. Each round, distribute the sequencer function fairly among all the active registered Aggregators.

�. To synchronise the L2 round duration to L1 rounds. Because the L1 is the source of truth, the finality

of the L2 transactions is dependent on the finality of the L1 rollup transaction that includes them,

which means there is no advantage in publishing multiple rollups in a single L1 block. It is impossible

to decrease the finality time below that of the L1, and, on the other hand, publishing L2 rollups less

frequently means that L2 finality is unnecessarily long. The optimum frequency is to publish one

rollup per L1 block.

To achieve fairness, the POBI protocol states that the TEE can generate one random nonce each round, and

the winner of a round is the Aggregator whose TEE generates the lowest random number from the group.

The TEEs generate these numbers independently and then gossip them. The Aggregators who do not win

the round, similar to L1 miners, respect this decision because it is rational to do based on the incentive

mechanism. If they choose to not respect the protocol, they are free to submit a losing rollup to the L1,

which is ignored by all compliant Aggregators, meaning such an Aggregator has to pay L1 gas and not get

any useful reward.

The second goal is achieved by linking the random nonce generation, which terminates a round, to the

Merkle proof of inclusion of the parent rollup (which exists as a transaction in the L1 transaction Patricia trie)

in an L1 block. This property is what gives the name of the protocol. This means that an Aggregator can

obtain a signed rollup from the TEE only if it can show the rollup is based on a published rollup in a prior L1

block. Furthermore, this feature links the creation of L2 rollup to an L1 block, thus synchronising their

cadence.

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/cryptography
https://www.investopedia.com/terms/p/proof-elapsed-time-cryptocurrency.asp
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A party wishing to increase its chances of winning rounds must register multiple Aggregators and pay the

stake for each. The value of the stake needs to be calculated in such a way as to achieve a right

decentralisation and practicality balance.

It is straightforward for all the other Aggregators to verify which rollup is the winner by comparing the

nonces and checking that the rollup signature is from an approved Aggregator.

Note that the L1 Management Contract is not checking the nonces of the submitted rollups, but it checks

that the block inclusion proof is valid. The L1 contract rejects rollups generated using a proof of inclusion

that is not an ancestor of the current block.

A further issue to solve is to ensure that the host cannot repeatedly submit the proof to the TEE to try to get

a lower nonce, explained here.

Typical Scenario

�. A new round starts from the point of view of an Aggregator when it decides that someone has

gossiped a winning rollup. At that point, it creates a new empty rollup structure, points it to the

previous one, and starts adding transactions to it (which are being received from users or by gossip).

�. In the meantime, it closely monitors the L1 by being directly connected to an L1 node.

�. As soon as the previous rollup was added to a mined L1 block, the Aggregator takes that Merkle

proof, feeds it to the TEE, who replies with a signed rollup containing a random nonce generated

inside the enclave.

�. All the other Aggregators do roughly the same thing at the same time.

�. At this point (which happens immediately after successfully publishing the previous rollup in the L1),

every Aggregator has a signed rollup with a random nonce which they gossip between them. The

party with the lowest nonce wins. All the Aggregators know this, and, after a short waiting period, a

new round starts.

�. The winning Aggregator has to create an Ethereum transaction that publishes this rollup to L1.

Note that by introducing the requirement for proof of inclusion in the L1, the cadence of publishing the

rollups to the block times is synchronised. Also, note that the hash of the L1 block used to prove to the TEE

that the previous rollup was published is added to the current rollup such that the Management Contract

and the other Aggregators know whether this rollup was generated correctly.
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The following diagram depicts this sequence: 

Notation

There are six elements that define a rollup :

�. The rollup parent.

�. The rollup height (Nth generation).

�. The Aggregator who generated it.

�. The height of the L1 block used as proof (L1_Proof_Height).

�. The height of the L1 block that includes this rollup (L1_Block_Height).

�. The nonce.
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The following diagram depicts these elements: 

The notation is the following: R$Rollup_Height[$Aggregator, L1_Proof_Height, L1_Block_Height, $Nonce]_.

Note that the value of L1_Proof_Height can only be lower than L1_Block_Height.

Example: R_15[Alice, 100, 102, 20] means the rollup height is 15, the aggregator is Alice, the height of the L1

block used as proof is 100, the height of the L1 block that included the rollup is 102, and the nonce equals

20.

The Canonical Chain

The POBI protocol allows any Aggregator to publish rollups to the Management Contract, so short-lived

forks are a normal part of the protocol. The forks cannot be long-living during normal functioning because

the TENVM running inside the TEE of every node deterministically selects one of the forks as the canonical

chain and only appends a rollup on top of that.

Because the logic is identical and attested on all nodes and the TEEs receive all the relevant content of the

L1 blocks (which means they process the same input data), there cannot be any competing forks more than

one rollup deep unless there is a hack.

The rules for the canonical chain are the following:

�. The genesis rollup is part of the canonical chain and will be included in an L1 block by the first

Aggregator.

�. An L1 block containing a single rollup whose parent is the head rollup of the canonical chain included

in a previous L1 block is on the canonical chain if no other rollup with the same parent was included in

an earlier block. Any other sibling rollup included in a later block is not on the canonical chain. This is

the Primogeniture rule, where a rollup is born when included in an L1 block.

�. If an L1 block contains multiple sibling rollups created in the same round using the same L1 proof, the

one with the lower nonce is on the canonical chain.

�. If an L1 block contains multiple sibling rollups created using different L1 proofs, the one created using

the more recent proof is on the canonical chain.

Using the notation, for the same Rollup_Height, the rollup on the canonical chain is the one with:

�. The lowest L1_Block_Generation.

�. In case there are multiple matches, use the highest L1_Proof_Generation.
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�. In case there are multiple matches, use the lowest nonce.

Given that the nonce is a random number with sufficient entropy, we assume there cannot be a collision at

this point during normal functioning. In the situation where it happens, the rollup on the canonical chain will

be the one with the lowest hash.

Preventing Repeated Random Nonce Generation

In phase 3 of the protocol, the TEE of each Aggregator generates a random nonce which determines the

winner of the protocol. This introduces the possibility of gaming the system by restarting the TEE and

generating multiple numbers.

The solution proposed by TEN is to introduce a timer in the constructor upon every startup of the enclave. A

conventional timer, based on the clock of the computer, is not very effective since the host can game it.

Instead, the enclave must calculate serially (on a single thread) a large enough number of SHA256 hashes,

which it would not be able to do faster than an average block time even on powerful hardware.

This solution is effective since the code is attested and does not rely on any input from the host.

A node operator wanting to cheat would restart the enclave and quickly feed it the proof of inclusion, only

for the enclave to process it after 15 seconds, which means the operator has already missed the time

window for that rollup.

This built-in startup delay is also useful in preventing other real-time side-channel attacks, which could be

used for MEV.

Aggregator Incentives

All successful decentralised solutions need a robust incentive mechanism to keep the protocol functioning

effectively.

Compared to a typical L1 protocol, there is an additional complexity to consider. In an L1 like Bitcoin or

Ethereum, once a node gossips a valid block, all the other nodes are incentivised to use it as a parent

because they know everyone does that too. In an L2 decentralised protocol like POBI, there is an additional

step: the publication of the rollup to L1, which can fail for multiple reasons. Furthermore, the incentive

design must also consider the problem of front-running the actual rollup. For a rollup to be final, it has to be

added to an L1 block, which is where an L1 miner or staker can attempt to claim the reward that rightfully

belongs to a different L2 node.

Note that rollup finality will be covered extensively in the TEN - Ethereum interaction section.

The high-level goal is to keep the system functioning as smoothly as possible and resist random failures or

malicious behaviour while not penalising TEN nodes for not being available. We believe that penalties for

availability increase the barrier of entry, and thus make the system centralised over the long term.

TEN introduces the concept of claiming rewards independently of the actual canonical rollup chain. The

great advantage is increased flexibility in aligning incentives at the cost of increased complexity. Rewards

can be awarded in full, split between Aggregators or just enough to cover the cost of gas.

To achieve this, the protocol has to maintain a pool of tokens. Users will pay fees into this pool, while nodes

will be paid from it. During bootstrapping, the protocol will have the ability to add newly minted tokens to

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/ten-ethereum-interaction
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the pool. Once the network picks up, the protocol will be able to burn excess tokens.

Note, that an important assumption is that the reward from publishing a rollup will never exceed twice the

gas cost.

These are the Aggregator rewarding rules:

�. The first Aggregator to successfully published a rollup without competition in an L1 block will get the

full reward. This is the most efficient case that is encouraged. Note: Competition means another

rollup with the same parent.

�. If multiple rollups generated with the same L1 proof and different nonces are published in the same

block (the target block), the one with the lowest nonce is on the canonical chain, but the reward is

split between them in a proportion of 75/25 (this ratio is indicative only). The reason for this rule is

that it incentivises Aggregators to gossip their winning rollup such that no one else publishes at the

same time.

There is no incentive for the losing Aggregator to publish as 25%  of the reward will not cover

the cost of gas, so they will make a loss.

There is an incentive for the winning Aggregator to gossip the rollup to everyone else to avoid

having this unwanted competition.

In case of a genuine failure in gossip (i.e. beyond designed latency), the losing Aggregator

receives something. This is to reduce the risk of Aggregators waiting more than necessary to

receive messages from all the other Aggregators.

�. If multiple sibling rollups generated using different L1 blocks as proof are included in the same block,

the one created with the most recent proof receives the full reward.

The original winning rollup that did not get published immediately does not receive any reward since

more recent competition exists. This rule is designed to encourage publishing with enough gas, such

that there is no risk of competition in a further block. The rule also encourages Aggregators to not

wait for rollups published with insufficient gas or not at all.

This mechanism ensures rounds reset when new L1 blocks are available and the reward is up for

grabs. An actor controlling multiple Aggregators with malicious irrational behaviour can only slow

down the ledger because the rational actors will publish the rounds they win.

�. If two consecutive L1 blocks include each a rollup with the same height created from the same L1

proof, but the rollup from the second block has a lower nonce, split the reward evenly between the

two Aggregators.

Note that the rollup with the higher nonce is on the canonical chain.

The reason for this rule is that this scenario is possibly the result of rollup front-running, which is thus

discouraged as the frontrunner is consuming precious Ethereum gas and the reward will always be

less than the cost.

The even splitting of the reward also encourages the Aggregator that wins a nonce generation round

to publish as soon as possible, because publishing a block later will at best result in a small loss.
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�. If two sibling rollups created from the same L1 proof are published more than one block apart, where

the first published rollup has a higher nonce, then pay the reward in full to the first published rollup.

The reason for this rule is that the winner most likely added too little gas, and someone else spotted

the opportunity and contributed to earlier finality, which is rewarded. It adds an incentive to monitor

gas prices and pay enough to ensure their rollup is published.

The following diagrams depict some of the rewarding rules: 
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The following diagram depicts rules in the case of front-running: 

This is python-like pseudocode to calculate the rewards that can be claimed by an Aggregator for a

Rollup_Height. Note that it is not comprehensive, and there may be many competing aggregators.

# The rollup height for which we calculate the rewards 
height = N 
 
# 'heightN_L1_Blocks' is a list of all L1 blocks starting with the 
_L1_Block_Height_ of the head 
# of the canonical chain of the previous generation, until the block where 
you encounter the 
# first valid rollup of _Rollup_Height_ plus one extra L1 block. 
heightN_L1_Blocks = calculateBlocks() 
 
# List of rollups of height N found in the last block 
rollups_in_last_block = heightN_L1_Blocks[-1].rollups.filter(r.height == 
height) 
 
# List of rollups of height N found in the target block 
rollups_in_target_block = heightN_L1_Blocks[-2].rollups.filter(r.height == 
height) 
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if rollups_in_target_block.size == 1 and rollups_in_last_block.size == 0: 
 
    # There is no competition for the target rollup 
    fullRewardTo(rollups_in_target_block[0].aggregator) 
 
elif rollups_in_target_block.size == 1 and rollups_in_last_block.size == 
1: 
 
    # There is competition for the target rollup in the next rollup 
    # Which means there is suspicion of frontrunning 
    target_rollup = rollups_in_target_block[0] 
    competition_rollup = rollups_in_last_block[0] 
    
    if competition_rollup.L1_Proof_Height == target_rollup.L1_Proof_Height 
and competition_rollup.nonce < target_rollup.nonce: 
        # This is possibly front-running or failure to gossip 
        # All parties involved in this will make a small loss 
        partialRewardTo(target_rollup.aggregator, '50%') 
        partialRewardTo(competition_rollup.aggregator, '50%') 
    else: 
        # The target has the lower nonce or is generated with a different 
proof 
        fullRewardTo(target_rollup.aggregator) 
 
elif rollups_in_target_block.size == 2: 
    # Two competing rollups in the target block 
    # This is not a front-running situation, so eventual rollups published 
in the next block do not matter 
    rollup1 = rollups_in_target_block[0] 
    rollup2 = rollups_in_target_block[1] 
 
    if rollup1.L1_Proof_Height == rollup2.L1_Proof_Height: 
 
        # According to rule #2 the competing rollups will split the reward  
        if rollup1.nonce < rollup2.nonce: 
            partialRewardTo(rollup1.aggregator, '75%') 
            partialRewardTo(rollup2.aggregator, '25%') 
        else: 
            partialRewardTo(rollup1.aggregator, '25%') 
            partialRewardTo(rollup2.aggregator, '75%') 
 
    elif rollup1.L1_Proof_Height > rollup2.L1_Proof_Height: 
 
        # According to rule #3 the rollup generated with the more recent 
proof gets the reward  
        fullRewardTo(rollup1.aggregator) 
    
    else: 
        # According to rule #3 the rollup generated with the more recent 
proof gets the reward  
        fullRewardTo(rollup2.aggregator) 
         
else: 
    pass
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Note that these rules are subject to adjustment based on production observations.

System Smart Contracts and Activity Rewards

TEN introduces a novel mechanism for incentivizing network activity through system smart contracts.

These contracts can programmatically reward any transaction with tokens or create live transaction

lotteries where any transaction can win prizes.

This system enables the platform to reward activity arbitrarily, encouraging user engagement and network

growth. For example, a system contract could reward users for interacting with new DeFi protocols,

participating in governance, or simply maintaining activity during network bootstrap phases.

The lottery mechanism creates additional excitement and value for users, where routine transactions have

the potential to win substantial rewards. This gamification of network participation helps drive adoption

while maintaining the core functionality and security of the platform.

Rollup Evolution

Detailed Technical Design

This section describes key TEN component designs.

Developer Features

TEN introduces several developer-focused features that enhance the programmability and user experience

of smart contracts while maintaining privacy guarantees.

Session Keys
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Session keys enable seamless user interactions by allowing developers to authorize subsequent

transactions without requiring manual signature approval for each operation. With a few API calls,

developers can configure transaction flows to use session keys, dramatically improving user experience for

interactive applications.

This feature is particularly valuable for on-chain gaming, where users would otherwise need to sign

transactions every few seconds. Session keys maintain security while eliminating the friction of constant

wallet interactions, enabling truly Web2-like experiences on-chain.

Secure Entropy

TEN provides secure, verifiable randomness natively within every transaction execution context. This

eliminates the need for external oracle calls or complex commit-reveal schemes, reducing costs and latency

while improving security.

The entropy is generated within the TEE environment using hardware-based random number generation,

ensuring that random values cannot be predicted or manipulated by node operators or external parties. This

enables fair gaming, secure lotteries, and other applications requiring trustworthy randomness.

Asynchronous Game Move Execution

To prevent exploitation in on-chain games, TEN introduces asynchronous move execution. Game moves are

submitted in one transaction but executed separately within the same block, providing the same latency

characteristics while eliminating timing-based attack vectors.

This architecture prevents clever users from exploiting transaction ordering or execution timing to gain

unfair advantages. The move execution occurs deterministically within the block but is isolated from the

submission transaction, maintaining fairness across all participants.

Precise Timestamping

Every transaction receives a precise timestamp indicating when it reached the sequencer, enabling time-

sensitive applications that require exact timing guarantees. This feature supports continuous-flow games

like "Aviator" or competitive timing-based applications.

The timestamp precision enables developers to create sophisticated time-dependent logic, competitive

games where milliseconds matter, and financial applications requiring exact execution timing. This brings

Web2-level temporal precision to decentralized applications.

{%  include_relative cryptography.md %} {%  include_relative account-based-state.md %} {%

include_relative l1-contracts.md %}

TEN and Ethereum Interaction

TEN is a confidential extension to Ethereum, and thus assets have to move freely between the two

networks.

All sidechains and L2 solutions have developed solutions to the mismatches between the different models

of the two networks, and typically there is a bridge contract that safeguards assets. The difference between
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sidechains and L2 solutions is that mismatches are more significant for sidechains because they have their

own finality and security mechanisms, and thus the bridge logic is either very complex or centralised.

Deposits

The user deposits supported ERC tokens into the well-known address of the Bridge contract, and once the

transaction is successfully added to a block, the TEN-enabled wallet automatically creates an L2

transaction, including proof of the L1 transaction. The exact amount is credited with wrapped tokens on the

user's account on TEN.

The fact that the finality of L1 transactions is probabilistic makes crediting the L2 account not

straightforward. Most solutions solve this problem by waiting for a confirmation period before crediting the

account. TEN takes a different approach and introduces a dependency mechanism between the L2 rollup

and the L1 blocks.

The rule is that the L2 rollup that includes the transaction that credits the TEN account has a hard

dependency on an L1 block, and the Bridge contract enforces that it is one of the ancestors of the current

block. If the L1 deposit transaction is no longer in the canonical L1 chain, it automatically invalidates the

rollup that contains the L2 deposit transaction, and the L1 deposit will only be recognised as the basis for an

L2 rollup credit transaction when it has been included in the canonical L1 chain.

The interaction is shown in the following diagram: 
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See also the Data model section and the following dependency diagram. 

Note: The deposit L2 transaction cannot be fully encrypted because the Aggregator has to decide whether

to include it in the current rollup based on the chances of the L1 block it depends on being final.

Withdrawals

The high-level requirement for the withdrawal function is simple: allow TEN users to move assets back into

the Ethereum network. The problem is that this is where the most significant threat against such a solution

lies because there might be a large amount of locked value.

The challenge is to implement this functionality in a decentralised way by defining a protocol and economic

incentives.

Due to the sensitivity of this function, many sidechains and L2 solutions rely on multi-signature technology

to control the release of funds. Optimistic Rollups rely on a challenge mechanism during a long waiting

period before releasing funds, powered by economic incentives.

TEN uses TEE technology, but it cannot leverage it for this aspect because of our threat model. The Bridge

Contract could release funds based on a signature from an attested TEE if it were invulnerable, but since

that is not the case, the solution is to use economic incentives on top of the POBI protocol.

Rollup Finality

The general rule is that withdrawals can be processed only when a rollup is final. This means this is the

protocol for the finality of the TEN chain relative to the Ethereum chain.

Rule 1 - The standard delay period

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/appendix#data-model
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In the usual case, a rollup from the canonical chain (see POBI protocol) is final if a standard number of

blocks corresponding to a period of 1 day has passed from the Ethereum block where it was published.

Note 1: The period is measured in Ethereum blocks because the delay is stable on average between

blocks.

Note 2: The reason for this period is to give honest nodes the chance to "challenge" the rollup if it is

malicious.

Note 3: The period is inverse to the number of L2 nodes. It should be long enough to give honest

participants the chance to react and publish in the face of aggressive censorship attempts against

them, but short enough not to degrade the user experience. We estimate that once the network

reaches a healthy number of nodes, we can reduce it to 50-100 blocks (~ 10 minutes).

Rule 2 - The competing forks

Assuming the period chosen at rule #1 is enough, the only possible write attack performed by an actor that

could hack the TEE manifests as multiple parallel forks at least two rollups deep. This is because all valid

TEEs run the same attested code that chooses the same canonical chain from the rollups published in the

L1 block presented as proof. If the Management Contract notices multiple forks, the rule is that finality is

suspended on all forks, thus, withdrawals are suspended. Likewise, if one of the forks becomes inactive, the

rule is that all rollups on the alive fork become final once a standard period of 1 day has passed from the last

L1 block that contained a rollup published on the inactive branch.

Note1: This rule degrades a write-attack into a Denial of Service attack on the withdrawal function.

Note2: Assuming there are honest participants, the actual canonical ledger keeps growing, including

user transactions.

Note3: The attacker has to spend Ethereum gas to keep the malicious fork alive.

Rule 3 - addressing the DoS on finality

Since rule #2 transforms any attack into a DoS attack, the protocol has some mechanisms to keep user

experience satisfactory even in the extreme case of a TEE hack.

�. The ultimate backstop is the "Attestation Constraints" rules. Forks in the canonical chain are clearly a

breach of protocol, caused either by a TEE hack or a protocol hack. This is ultimately resolved with

software or, at worst, hardware updates. Once the management Contract forces an upgrade, the

attacker will no longer be able to create malicious rollups, and thus the fork becomes inactive, and

finality resumes on the valid fork.

�. For any users with an L2 node, it is obvious which is the canonical chain, as it is the one that does not

fail. Market makers operating on both L1 and L2 can step in and absorb the withdrawal requests of

users at a slight discount without taking any actual risk.

The above rules will, in practice, prevent this type of attack, and if it happens, offer a practical solution for

users. In addition, the protocol has yet another backstop to address the extreme case of a very persistent

attacker.

The network governance model allows any user to trigger the forced finality procedure by staking or voting

on one of the competing rollup chains. The minimum stake is a percentage of the amounts being withdrawn

on that branch, set through governance. Backers of the other chain are obliged to stake a similar or higher
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value to compete. The decision process is run as an auction, where the party that loses also loses their

bids. When concluded, all rollups on that chain are considered final, and withdrawals are executed.

Withdrawals protocol

Each TEE signed rollup contains a plaintext list of withdrawal requests. See: Data Model.

The Bridge contract keeps track of these requests and executes them at different times, based on the

finality status of that rollup.

The withdrawal process is indicated in the following diagram: 

TEN public events

Ethererum application developers can use a confidential L2 like TEN for some jobs that are not possible

otherwise.

For example, an L1 smart contract organises a fair lottery that needs a reliable random number generator

that the miners cannot game.

Another example is publishing the result of a poker game played inside TEN, which the L1 contract can use

to make a payment or update the tournament results.

The challenge for achieving this functionality is that the data originating in L2 has to be final. Luckily TEN

has this mechanism already in place for processing withdrawals. Applications running inside TEN can emit

special types of events called Public Events, which the OVM will add in plaintext into a dedicated data

structure in the rollup. The _Rollup Contract _ first processes the rollup, and then once they reach finality, it

exposes these events to external contracts.

Note: The fair lottery can be implemented in two steps to avoid any possible influence. The implementation

can use the submarine technique and first publish the hash of that number in an event, and a few blocks

later publish the actual number in a different event.

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/appendix#data-model
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Threat Model

TEN is different from traditional L1 or L2 solutions primarily because data is stored and processed privately

in trusted execution environments, which brings a new set of threats. Compared to other L2 solutions, the

decentralised nature of the POBI protocol also brings some new threats.

The main threat to any ledger technology is data corruption, also known as a safety failure. It could take the

form of stealing assets, double spending assets, or, more generally, adding illegal entries. Leading

blockchains solve this problem by implementing a Byzantine Fault Tolerant (BFT) consensus between

independent parties and creating incentives to ensure that anyone who breaks the rules will not be

rewarded or will even be penalised. The most extreme attack is a 51%  Sybil attack, where the attacker

somehow gains the majority of the decision power (computing power for proof of work or stake for proof of

stake) and can rewrite the history. This attack manifests as replacing an existing valid transaction with a

valid competing transaction. While the ledger remains logically valid, this is equivalent to stealing for the

beneficiary of the first transaction. If the attacker tried to physically corrupt the ledger, everyone would

ignore the invalid block. The best defence against this attack is to ensure that multiple independent

powerful actors have no incentive to collude.

The general principle of the TEN protocol is that it reverts to the behaviour of a typical non-confidential

blockchain in case of hacks on the TEE technology. In other words, the safety of the ledger does not

depend on the hardness of the TEEs; instead, what happens is that attackers can read transactions and

data. Also, TEN does not delegate safety to a single actor by planning to support TEEs from multiple

hardware manufacturers. In case of severe attacks, there are multiple mitigation mechanisms in place, the

ultimate being that the L2 ledger is frozen, and everyone has the chance to withdraw using balance proofs.

TEN achieves data availability in the same way as all the other rollup solutions; the L1 is the source of data

truth for the L2 network. Any L2 node with a valid TEE in possession of the shared secret can download the

rollup chain from the L1, calculate the entire state inside its encrypted memory, and at the same time

validate all transactions.

The following sections analyse the different threats against the TEN protocol.

Threats to the TEE Technology

The TEN design considers that the TEE technology and the program inside are not easily hackable, so the

protocol is not optimised to handle them. Attacks on TEEs have occurred in laboratories, so a secondary but

essential concern is to prevent ultra-sophisticated actors with the ability to hack this technology from

stealing funds or breaking the integrity of the ledger.

The threat model of TEN is that sophisticated attackers run an Aggregator node on a machine with a TEE

they control, have access to the master seed and the entire ledger, and run any possible attack on it,

including attacks on the physical CPU.

Assuming that such attacks are successful, the attacker can limit themselves to read-level access or an

attempt to corrupt the ledger using a write-level attack.

Read-Level Attacks
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Read-level hacks happen when the attacker can extract some information from the TEE. This threat is

specific to confidential blockchains.

The only way to defend against these attacks is to carefully audit the code and keep the Attestation

Constraints up to date. If this attacker is discreet, the information leak can continue until a software patch is

published or until new hardware that removes this attack is released.

Another way to defend against it which will be considered in future versions, is to implement a scheme

similar to key rotations.

The least severe read attack is a side-channel where the attacker can find information about a specific

transaction. The most severe is when the attacker can extract the master secret and read all present and

future transactions.

If such an attack is successful, the network is equivalent to the behaviour of a typical public blockchain

where all transactions are public, and MEV is possible.

Write-Level Attacks

Write-level hacks are powerful in theory since they could enable the attacker to write to the ledger and thus

be able to break its integrity if there were no other protections.

A write-level hack could happen if an attacker extracts the enclave key and signs hand-crafted rollups that

contain invalid transactions or balances.

Note: This type of attack is viewed as the main threat to the protocol and thus handled explicitly.

The mechanism to prevent this attack is described in detail in the Withdrawals section.

The high level goal of the protections is to transform such an attack into a liveness attack on the withdrawal

function.

Colluding Write-Level Attacks

An extreme variant of the Write-level attack is performed by a powerful group that hacked the TEE and was

able to take complete control of all the Aggregator nodes.

The defence against this attack is to incentivise a reasonable number of Verifiers to watch the TEN ledger in

real-time. These actors will detect a malicious head rollup and notice that no other valid fork is being

published.

Note: One such actor monitoring the network will be the TEN Network Association, which has the mandate

to keep the protocol functioning correctly. The protocol also rewards other independent parties to take on

this job by assigning random rewards to Verifiers who can prove they are active.

Any L2 node can become an Aggregator quickly by benefiting from the censorship resistance of Ethereum.

To counter the attack, they will have to pay the stake and publish a correct rollup.

Attacks Against The Fair Lottery That Designates The Winner Of The Round

The POBI protocol assigns a leader each round by using random numbers generated inside the TEE. An

attacker that can hack the technology could generate a well-chosen number and thus win each round. This

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/ten-ethereum-interaction#withdrawals
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is not an attack against the safety of the ledger and is not of great concern.

If some Aggregator wins statistically many more rounds than they should, it will highlight the problem to the

community.

A more dangerous variation of the attack is when the attacker can also read transactions and thus front-run

and extract value.

Note: This area is under research.

A variation of this attack is when the attacker cannot directly hack the TEE, but it is restarting the TEE in the

hope of generating a lower nonce and thus improving their chances. This threat is mitigated by a delay

introduced at the startup of the OVM, which will cause the attacker to miss out on that rollup cycle.

Other Threats To The Protocol

This section analyses threats not directly linked to the TEE, although a hack against the TEEs might amplify

them.

Invalid Rollup Attacks

The Rollup Contract only accepts signed rollups from Aggregators that can prove their TEE attestation, and

unless the TEE itself is corrupted, it is impossible to publish invalid rollups. This means that such an attack

will become a liveness attack when forks are detected in the rollup chain.

Empty Rollup Attacks

An Aggregator winning a round can freely publish empty rollups, but that would not harm the system if there

were multiple independent Aggregators. It will just slow down the network. TEN disincentivises this attack

since the reward for the publisher is linked to the fees collected from the included transactions.

Sybil Attacks

This section analyses the threats that a powerful adversary who can create many Aggregators can pose on

the protocol.

The reasoning around this attack is quite different from typical public blockchains.

There are two ways to run this attack against TEN depending on the capabilities of the attacker:

�. The attacker sets up N CPUs with TEE and pays the stake for each of them, where (N >

Total_Number_Of_Aggregators / 2).

�. The attacker hacks the TEE and can impersonate many TEEs limited only by the stake. This attack

has been analysed in the "Colluding write-level attack".

Sybil Attack Without Hacking The TEE

If the attacker cannot hack the TEE, they cannot deviate from the canonical chain or insert illegal

transactions, as the attested software will not let them. Having a majority on the TEN network will not help

with this. An attacker who wants to perform a double-spend attack on TEN will have to change the
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canonical chain already published in L1 blocks. To perform a double spend, the attackers have to perform a

double-spend attack on the L1 blocks themselves that contain the rollups.

Economical Sybil Attacks

Another type of attack, which a well-resourced actor can perform, is controlling many Aggregators to make

a good return from the rewards. The more Aggregators someone controls, the more chance of getting a

winning nonce.

There is no risk in altering the ledger or performing double-spend attacks. There is no risk of a Denial of

Service attack either, by refusing to publish winning rollups since the incentives encourage other actors to

quickly fill in gaps and publish rollups.

There are no risks of driving other Aggregators out of business by denying them the chance to win rollups

since they will get the reward of being active nodes.

Catastrophic Events

One of the worst scenarios is a catastrophic event that leaves all the value locked.

This could happen in theory if all registered TEEs were simultaneously physically destroyed, and thus the

master seed was permanently lost.

If a single TEE is not physically destroyed, and a single Ethereum node has a copy of the L1 ledger, the

network can be restarted, since all the required information is stored on the L1, including the master seed

encrypted with the key of the surviving enclave and all the rollups.

The defence against this is to achieve a reasonable decentralisation.

MEV By TEN Aggregators

Transactions and processing are hidden from node operators. Still rollups contain some information and the

node operator can query the balance of accounts they control.

To make this attack impractical, TEN introduces a slight delay that preserves the user experience of public

blockchains.

The TEE will emit events and respond to balance requests only after it received proof that the rollup was

successfully published in an L1 block. This mechanism will prevent an Aggregator from probing for

information while creating a rollup.

An Aggregator wishing to attack this scheme would have to quickly create valid Ethereum blocks while

executing user transactions, which is highly impractical since there is a hardcoded minimum value for the

mining difficulty.

Threats To The POBI Protocol

The POBI protocol handles most failure scenarios using a set of incentive rules.

1.  The winning sequencer does not publish
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The winning Aggregator is incentivised to publish the rollup in order to receive the reward, which means this

scenario should only occur infrequently if the Aggregator crashes or malfunctions. If it happens, it will only

be detected by the other Aggregators when the next L1 block does not contain the winning rollup that was

gossiped about.

In this situation, every Aggregator will:

Discard the current rollup.

Unseal the previous rollup.

Add all current transactions to it.

Then seal it using the last empty block.

Gossip it.

In effect, this means that the previous round is replayed. The winning Aggregator of this new round has

priority over the reward in case the previous winner is added in the same block.

2.  The winning sequencer adds too little gas,  and the rollup sits in the mempool unconfirmed

This scenario has the same effect as the previous one is handled in the same way. If the rollup is not in the

next block, the round is replayed.

Publishing with insufficient gas is, in effect, punished by the protocol because it means that on top of

missing the rollup reward, the Aggregator also pays the L1 gas fee.

Competing L1 Blockchain Forks

In theory, different L2 Aggregators could be connected to L1 nodes that have different views of the L1

ledger. This will be visible in the L2 network, as gossiped rollups pointing to L1 blocks from the two forks.

Each Aggregator will have to make a bet and continue working on the L1 fork that it considers to be

legitimate, the same behaviour as any L1 node.

This is depicted in Rollup Data Structure.

If it proves that the decision an Aggregator made was wrong, it has to roll back the state to a checkpoint

and replay the winning rollups.

Trust Model

The analysis in this section is based on a framework defined by Vitalik Buterin, the creator of Ethereum.

TEN is slightly different from typical blockchains or L2s because it introduces another actor into the trust

model, the hardware manufacturer.

These are the questions that will be answered using the terminology from the framework.

�. How many people do you need to behave as you expect? Out of how many?

�. What kinds of motivations are needed for those people to behave? Do they need to be altruistic or

just profit-seeking? Do they need to be uncoordinated?

�. How badly will the system fail if the assumptions are violated?

Actors

file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/rollup-data-structure
https://vitalik.ca/general/2020/08/20/trust.html
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The following groups are actors in the system.

�. The TEN network may contain a few thousand nodes, from which a minority core set will be

Aggregators and the rest Verifiers. The governance body can control this number by setting some

parameters.

�. Another important group in this is the token holders, who have governance powers.

�. The supported hardware TEE manufacturers.

�. The auditors.

Notation

�. TEN_N - number of TEN nodes ~ 1000.

�. Ethereum_N - number of Ethereum nodes.

�. TEE_Manufacturer_N - number of manufacturers. Small number, but composed of large reputable

companies.

�. Token_Holders_N - number of TEN token holders. Many thousands.

Liveness

There are multiple aspects to consider when analysing the liveness trust model. Since TEN is fully

decentralised at the network level, as long as one single Aggregator is alive, the network is alive and

processing user transactions.

For transaction processing: 1 of TEN_N, where the motivation of nodes is profit-seeking.

For processing withdrawals and thus reaching finality, the analysis is more complex. Since withdrawals are

processed automatically from the instructions found in the rollups, the trust model for the liveness of this

feature is the model for safety.

Safety

The safety of TEN is based on a couple of layers, which transform a safety attack into a liveness attack.

Note that the safety of the ledger is at risk only if there are hacks in the confidential hardware technology.

Given that hardware manufacturers are generally large and reputable companies, they act as the first

barrier. Their motivation is ultimately profit-seeking because vulnerabilities in the hardware they create will

lead to lower sales and reputational damage.

Hardware layer: 1 of TEE_Manufacturer_N, where the motivation is profit-seeking. Note that this assumes

that the hardware manufacturer introduces a bug in the TEE implementation to attack the ledger. Normally

the threat is lower since a single user with a valid TEE by any manufacturer will be able to stop an attack.

If there is a successful attack against the TEE, the next defence is a single active L2 node that publishes a

valid rollup. 1 of TEN_N, where the motivation of nodes is profit-seeking.

The next line of defence are the token holders, who will vote on L1 to update the Attestation Constraints, to

fix the vulnerability. They are invested in the community because they hold the token, which means they

profit if it functions correctly: Token_Holders_N/2 of Token_Holders_N, where motivation is profit-seeking
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Note that the attacker is not directly profit seeking because there is no possibility to withdraw assets until

the fork is resolved.

How Badly Will The System Fail If The Assumptions Are Violated?

If all supported hardware manufacturers colluded, they would be able to break the safety of the ledger.

Governance

Governance for the TEN protocol, the reference implementation, and the network configuration will be

made explicit and visible to all. TEN governance thinking is derived from the experience of Bitcoin and

Ethereum.

There are several types of control exercised in a decentralised system:

�. Explicit control exercised by a group of people using direct signing or voting.

�. Implicit control implemented in an immutable protocol.

�. Implicit control implemented in a protocol that itself is represented by an open-source codebase that

is mutable.

Note that almost nothing is truly immutable because a codebase or even hardware executing even the most

immutable protocol can change its behaviour, or it can be changed. In theory, a truly immutable system

could be achieved using various hash constraints within TEEs; however, allowing for upgrades is a more

desirable outcome. Ultimately, for all other cases, there is an explicit governance process somewhere.

Bitcoin miners, for example, have some power to determine the rules by choosing which version of the core

code to install and to produce blocks with. If there is disagreement, there is a fork, and the user community

ultimately decides what value to assign to each fork. This is only a problem if the competing forks have

similar mining power, and thus security. For day-to-day upgrades, miners have the de-facto decision power,

but in case of disagreements, the users have the ultimate power through free markets. This is currently the

golden standard for decentralised governance, with advantages and disadvantages.

It gets even more complicated on networks like Ethereum with smart contract capabilities. On the one hand,

similar to Bitcoin, the end-users decide which miners have chosen the correct version. On the other hand,

the applications running on top of Ethereum have their governance requirements. In the early days, The

DAO fell into the second category: Implicit controls implemented in an immutable protocol., but it was

exploited, and in addressing this by forking Ethereum and indirectly creating Ethereum Classic, it became

apparent that there was actually a mutable codebase behind the immutable protocol (the Ethereum

codebase itself). It also became apparent that users have the ultimate power as they indirectly voted with

their wallets on the preferred approach of handling that hack, and Ethereum Classic has much lower

adoption than the mutated Ethereum.

After that hard lesson, most Ethereum smart contracts have component contracts that can be upgraded

through an explicit governance process since it is unlikely the community will again provide "get out of jail

free" cards to application developers. Sometimes the governance is obfuscated, but generally, if the

contract is upgradeable, it means someone is in charge.

The key difference between the golden standard of Bitcoin, and typical smart contract governance, is that

the end-users no longer have any power to choose which "smart contract fork" they prefer. Using the
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original smart contract and adding some value to it, they are at the mercy of the application governors.

Since the TEN protocol is anchored in Ethereum as a smart contract, it cannot rely on TEN end-users to

hold the ultimate power. The next best thing is to be very explicit about all the system's controls and

achieve separation of decision-making (which can be devolved to token-holders and articulated in a

governance specification as proposals) from execution (which relies on individuals pushing buttons).

TEN Controls

Building on the above, the following controls are exercised within TEN.

1. The TEE Attestation Constraints.

The Attestation Constraints (AC) control which software is allowed to run inside the TEE and can process

the user transactions and create the rollups. A group of independent, reputable, and competent security

auditors has to analyse the code and approve it by signing it carefully. The constraints contain the keys of

the approved auditors.

The parties who have the power to set the AC and thus appoint auditors ultimately control the software.

This concern is not entirely different from the smart contracts security auditors, except that typically users

decide which auditors they trust by using or not using those contracts.

2. Administration Of Ethereum Management Contracts.

Like most other Ethereum applications, these contracts will have upgradeable parts to cater for bugs and

new features. Whatever is upgradeable means that the administrators have full control over those aspects.

�. Bridge logic

�. Rollup logic

�. Attestation logic

In the example above, the auditors are a fixed list. However, that might not be practical, as companies might

appear or disappear. The list of approved auditors has to be managed by a proposal and vote process by

the community without any requirement for central intervention. Going a level deeper, the code that

manages this process might need to be upgradeable, so someone ends up controlling it.

3. Creating Rollups

Another power, equivalent to the L1 stakers or miners, is held by TEN Aggregators. They run attested

software and hardware and have paid a stake.

They have the power to append to the L2 ledger, but they do not have the power to choose competing

software and thus create forks.

4. Canonical Rollup Chain.

In a typical L1, the canonical chain is ultimately decided by its users from one of the competing forks

because the ledger is ultimately coupled to the value of the coin.
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In TEN, the Aggregators have to run attested software, which constraints their free will unless they can hack

the TEE technology.

According to the rules implemented, a valid TEE does not sign a rollup building on top of a chain that is not

canonical, so any hack is immediately visible.

Additional complexity involves the withdrawal process, which depends on assured finality on the canonical

chain.

5. Slashing The Stake Of Misbehaving Parties.

Aggregators that hack an enclave and attempt to break the ledger's integrity are discovered by the protocol

and are punished by slashing to disincentivise such behaviour further.

Slashing is an implicit process carried out by the Management Contract based on predefined rules.

However, ultimately it is itself controlled by the code governance.

6. Expected Monthly Operational Cost For Nodes

TEN has a fee structure that delivers a predictable income for node operators and a predictable fee for

users. In order to derive a fee that sufficiently compensates nodes, a value that represents the monthly

operational cost for each node must be set. This variable also has the power to increase or decrease

demand for running a node helping ensure a balance between decentralisation and end-user cost.
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Glossary

Aggregator A node that participates in an L2 network and collaborates with other Aggregator nodes to

manage the L2 contracts and confirm correctness of transactions. Specifically, it participates in transaction

gossip, and may propose transaction rollups to be registered with the L1 blockchain.

Attestation Constraints Means of controlling which software is allowed to run inside the Trusted Execution

Environment.
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Automated Market Maker / AMM Uses liquidity pools to allow digital assets to be traded automatically and

without permissions.

Block Reward An amount of OBX which is given to node operators to cover their costs to validate and

publish blocks.

Enclave Key / EK Collection of one or more cryptographic keys used for encrypting and decrypting data

unique to a specific enclave, digitally signing data and identifying a Trusted Execution Environment.

ERC-20 Ethereum Request for Comments 20, proposed by Fabian Vogelsteller in November 2015, is a

token standard that implements an API for tokens within Smart Contracts.

Ethereum Virtual Machine / EVM A virtual computer whose existence is maintained by thousands of

connected real-world computers running an Ethereum client.

Gas The unit that measures the amount of computational effort required to execute specific operations on

the Ethereum network.

Gas Price The levy imposed for every computation executed on the Ethereum network to encourage good

behaviour, e.g. prevent bad actors from spamming the network.

Genesis Enclave The first Trusted Execution Environment to join a new network. The Genesis enclave

propagates the master seed to the other attested nodes by encrypting it with specific Trusted Execution

Environment keys.

Host The party controlling the physical server that runs the Trusted Execution Environment. In the threat

model of typical confidential computing applications, including TEN, the host is an adversary of the system.

L1 Management Contract The smart contract that runs on Ethereum and handles all L1 concerns.

Layer 1 / L1 The public Ethereum blockchain and network.

Layer 2 / L2 A second network built on top of an L1 network and dependent on it. An L2 network expands

on the capabilities of the L1 network by increasing capacity or enhancing functionality.

Maximal Extractable Value / MEV Participants in the network may extract value by observing user

transactions and then preempting them by inserting their own transaction ahead in the processing queue

and influencing the price of an asset in order to extract a profit.

Non-Fungible Token / NFT A unique and non-interchangeable unit of data stored on a digital ledger.

TEN Public Events Special events emitted by L2 contracts that are included in the rollups in plaintext, and

are exposed to L1 contracts once rollups reach finality. It is a mechanism by which TEN can publish

information.

TEN The utility token used by TEN.

Off-Chain Activity happening away from the Layer 1 blockchain.

Optimistic Rollup Optimistic rollups assume that all transactions are valid and submit batches without

performing any computation. They include a challenge period during which anyone can dispute the
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legitimacy of the data contained in a batch. If a fraudulent transaction is detected, the rollup executes a so-

called fraud proof and runs the correct transaction computation using the data available on Layer 1.

Over-the-counter / OTC A venue to provide bespoke financial agreements or options negotiated between

counterparties as opposed to being listed on an exchange.

Patricia Tree Root A Patricia Tree (or Trie), is a data structure used in the Ethereum model to represent the

receipt trie, the world state trie, the account storage trie, and the transaction trie. Only the root node of the

trie is stored in the ethereum block, and it represents a single cryptographic proof for the entire state.

Proof Of Block Inclusion / POBI TEN's novel decentralised round-based consensus protocol based on a

fair lottery and on synchronisation with the L1 designed for L2 rollups.

Rollup L2 solutions that perform transaction execution outside the main L1 chain, but post transaction data

on L1. A rollup is a batch of transactions that were executed by the L2 Verifiers.

Root Provisioning Key / RPK A cryptographic key randomly created and retained by Intel. It is the basis for

how the processor demonstrates that it is a genuine Intel SGX CPU at a specific trusted computing base.

Root Sealing Key / RSK A cryptographic key that is unique to an enclave which that enclave uses to

encrypt and decrypt data stored outside the enclave boundary.

Sequencer A sequencer is the selected Aggregator which builds a rollup in a round.

SGX Software Guard Extensions, a technology provided by Intel, a major CPU manufacturer. An SGX CPU

has an area for encrypted computation, which the operator cannot access, secured by a private key burnt

into the CPU during manufacture.

Smart Contract / Contract A user application running on a blockchain network which holds data or state,

responds to user commands, and may store and manage assets or money.

Stake A non-negligible amount of value which is given over to an activity or process to demonstrate

commitment to follow the rules for that activity or process.

Trusted Execution Environment / TEE An environment where contracts may be managed in a

deterministic, repeatable and auditable way, based on a set of trust dependencies.

Trusted computing base / TCB The set of computing technologies that must be working correctly and not

be malicious or compromised for a security system to operate.

Utility Token Tokens which are intended to provide digital access to an application or service.

Verifier A light L2 node which observes transaction rollups published to the L1 blockchain, and can

participate in possible disputes. Any Verifier can become an Aggregator by registering on the L1 contract

and pledging some stake.

ZK-rollups Zero knowledge rollups generate cryptographic proofs that can be used to prove the validity of

transactions.

Data Model
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This diagram shows the data structure for the Management Contract and Aggregator: 
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This diagram shows the data structure for the rollup and withdrawal: 

This diagram shows the data structure for the transactions and account: 

Design Alternatives
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This section describes alternatives considered and discarded.

Alternative L1 Deposit management

On a high level, a user has to deposit ERC tokens on the L1 Management Contract, and the same amount

has to be credited to the user's account on TEN. This is not straightforward since finality is probabilistic.

One option to achieve this is to wait a number of L1 blocks for confirmation. This has some clear

disadvantages.

Another option is to introduce a dependency mechanism between the L2 rollup and the L1 blocks. Basically,

the L2 transaction that credits the TEN account will be in an L2 rollup that will only be accepted by the

Management Contract if the dependency is part of the ancestors of the current block. This option is

discarded because in the case where the L1 deposit gets reorganised away before the rollup is created, the

rollup which contains the L2 deposit transaction is invalidated.

Alternative L1 Theft Prevention

There is a pool of liquidity stored in the L1 Bridge contract, which is controlled by the group of TEEs who

maintain the encrypted ledger of ownership. Some users will want to withdraw from the L2 and go back to

L1, which means the Management Contract will have to allow them to claim money from the liquidity pool.

In case one of the Aggregators is able to hack the TEE, they will be able to produce a proof that they own

much more and thus run with it.

To solve this we have a couple of options. We could organise the Aggregators in a BFT setup, and require

that 2/3 of them sign over each rollup. The major disadvantage with this approach is that the finality of an

L2 transaction will depend on both the BFT finality and the L1 finality. Another disadvantage is that a

determined hacker with the means to break secure hardware could also amass the majority of staking

power and be unchallenged.

Another option with a better trust model is to introduce a challenge mechanism similar to the optimistic

rollups. The disadvantage is that it introduces a delay, and a concept of probabilistic finality.

The data structure containing the rollups is a chain that can have multiple heads. The Management

Contract cannot evaluate which one is correct because it cannot execute the transactions inside. But there

are some simple rules that can be applied. For example, if a branch does not progress for N blocks it is

considered dead. If at the moment of withdrawal there is only a single active head rollup, then all the system

has to do is wait for a reasonable number of blocks (20-50) to ensure that there is no censorship attempt

on L1. If there is a fork, then the number of blocks has to be increased to allow one of the forks to die out

naturally. If it does not then all withdrawals will be locked, and the contract will enter a special procedure.

Alternative Revelation Options

The solution will reveal all transactions after one year through a key-rotation process. An alternative policy

could be to specify a ratio of transactions (e.g. 1%) are revealed either immediately or subsequently. Illegal

transaction detection then becomes risk-based, but the ratio cannot be high enough to be a disincentive

and yet still provide utility.

Alternative Nonce Generation
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The Aggregator host must not be able to repeatedly submit the rollup proof to the TEE to get a new random

nonce, and thus achieve a low nonce in order to win the Aggregator selection round. Monotonic counters

were considered but an alternative is to make the nonce deterministic. The nonce is deterministically

derived from the L1 block hash combined with the public key of the enclave. This achieves the same

purpose of being a fair lottery assuming there is no collusion between L1 miners and L2 Aggregators. Even if

there was collusion, the cost of gaming the L1 hash might be too high in a proof of work network. In a Proof

of Stake network, on the other hand, collusion with L1 would pretty much mean that each round the L1

winner will also win the L2 round.

Alternative Privacy Revelation

There are several options for revealing private data to allow law enforcement agencies to prosecute illegal

behaviour and deter criminals from taking advantage of TEN's privacy features:

Not make a provision to reveal on the basis that TEN is a platform and is un-opinionated on what it is

used for.

The transaction encryption key can be rotated and revealed periodically with a delay, such that any

interested party can view all transactions. This is the solution we chose, but with some application-

level flexibility.

A governance committee can approve some data mining enclaves that will have access to the shared

secret and output suspicious activity.

From the outset TEN will rotate the encryption key every year and reveal historic keys in the first phase, and

decide later if additional mechanisms are required. A case-by-case revelation based on authority demands

is time-consuming and prone to political interference. It is also difficult to determine objectively what is a

bona-fide authority which introduces a political dilemma.
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