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Abstract

We present TEN, a next-generation Ethereum Layer 2 rollup protocol that introduces data confidentiality,
computational privacy, and resistance to Maximal Extractable Value (MEV) by leveraging hardware-based
Trusted Execution Environments (TEEs).

TEN represents a major step forward in decentralized system design by reintroducing data access controls
— a foundational feature of Web2 that Web3 largely abandoned in favor of radical transparency. Early
computing was local: users interacted with isolated desktop machines. The internet changed that, enabling
shared data and remote computation — but always gated by fine-grained access control. Platforms like
Facebook and Amazon thrived under this model. Web3, in its push for openness and composability,
discarded controlled data visibility - making it nearly impossible to support sensitive, real-world
applications.

By integrating programmable encryption, TEEs, and an Ethereum-compatible execution environment, TEN
reintroduces access control into a fully decentralised setting. This enables encrypted, autonomous, and
composable smart contracts that preserve user and application privacy without sacrificing decentralisation
or composability. The protocol supports private shared state, confidential transactions, and short
withdrawal periods, while maintaining the simplicity and performance characteristics of Optimistic rollups.

Importantly, TEN's trust model does not require perpetual belief in any single hardware vendor. If a TEE is
compromised or a manufacturer behaves maliciously, the system gracefully degrades into a transparent
blockchain, preserving ledger integrity while forfeiting privacy—a fallback consistent with the ethos of
credible neutrality.

TEN is not just a technical improvement; it represents a shift in what Web3 can become. With support for
autonomous Al agents, composable encrypted dApps, and robust MEV protection, TEN unlocks
applications previously thought infeasible in decentralised contexts. In doing so, TEN closes the gap
between Web2's functionality and Web3's promise—offering the best of both worlds, only better.

Motivation
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Public blockchains have come a long way since the explosive growth of 2020-2021, when DeFi and NFTs
broke into mainstream awareness. At their peak, DeFi protocols attracted over $100 billion in total value
locked, while NFT marketplaces exceeded $10 billion in volume. These early use-cases validated the
promise of programmable value - but also exposed a critical flaw: the complete absence of data access
control.

Transparency, once celebrated as a virtue, has become a liability. On-chain activity today remains fully
public: every balance, transaction, strategy, and piece of logic is visible to everyone - including competitors,
adversaries, and MEV bots. This design made sense for verifying Bitcoin payments, but not for building
real-world applications.

If you analyze any successful digital application - Netflix, WhatsApp, Spotify, Revolut, even mobile games -
you'll find one thing in common: they all rely on access control. Not just to provide privacy, but to function.
A bank wouldn't work if everyone could read and manipulate every account. Games collapse if opponents
can see your position. Spotify's business model fails if anyone can stream anything for free.

Yet, blockchains don't have that. Smart contracts today can define who can write data, but they cannot
restrict who can read it. Every view() function leaks everything. Every NFT, position, and strategy is
exposed. This makes it nearly impossible to build viable applications in Web3 beyond speculation.

TEN is a new kind of Ethereum Layer 2 rollup that introduces Smart Transparency - a paradigm where smart
contracts not only enforce rules of computation, but also enforce rules of data access. TEN leverages
Trusted Execution Environments (TEEs) - hardware-based enclaves already trusted by banks, cloud
providers, and mobile platforms - to enable encrypted state, private view functions, and programmable
access control at the smart contract level.

This lack of access control doesn’t just limit user privacy - it leaves the entire ecosystem vulnerable.
Without the ability to hide intent or protect positions, users become easy targets for extractive behavior.
Nowhere is this more evident than in the rise of Maximal Extractable Value (MEV) - a growing class of
attacks where adversaries exploit transaction visibility and ordering for profit.

MEV has become a $2+ billion-a-year drain on users, with techniques like sandwiching, liquidation sniping,
and time-bandit reorgs degrading user experience and undermining trust in blockchain infrastructure. In
this context, the need for encrypted computation is no longer theoretical. It is existential.

TEN addresses this not only by mitigating MEV, but by radically expanding what's possible on-chain. From
fully confidential DeFi protocols and dark pools to Al-native gaming and autonomous agent marketplaces,
TEN enables use-cases previously thought incompatible with blockchain. By supporting encrypted,
composable dApps while preserving Ethereum compatibility, TEN opens a new chapter in Web3 - one
where trustlessness, privacy, and programmability are no longer mutually exclusive.

Differentiators

e TEN leverages Ethereum, a public blockchain with the greatest adoption, legitimacy, security, and
liquidity, as a base layer to handle security and data availability and manage the inflow and outflow of
value.

e TEN keeps all transactions and the internal state of application contracts encrypted and hidden, and
so provides a credible solution to MEV.
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e By providing an Ethereum Virtual Machine (EVM) compatible VM, deploying existing contracts to TEN
with minimal change may be possible.

e TEN is trustless and decentralised. It takes processing from the Ethereum Layer-1 (L1) and allows
lower transaction costs similar to other Layer-2 (L2) networks.

e TEN leverages TEEs for privacy but not for integrity and is not affected by the limitations of
hardware-based confidential computing.

e TEN guarantees quick finality by synchronising the publishing of rollups to the cadence of the L1
blocks.

e TEN introduces a novel mechanism to allow application developers to balance the need for user data
privacy (and MEV prevention) with the need to deter long-term illegal behaviour.

Challenges

As well as preserving the confidentiality of user data, the other main goals of this protocol are to be fully
permissionless, decentralised and a generic smart-contract execution engine compatible to the greatest
extent with the EVM.

In this section, we enumerate the key challenges we faced when designing the TEN protocol.

¢ Relying on hardware-based TEEs for applications where significant value depends on the security of
the hardware poses several challenges. A system designed to manage value should not allow an
attacker capable of compromising secure hardware to take ownership of the value under any
circumstances. In other words, the ledger's integrity should not depend on TEEs being 100% hack-
proof or the hardware manufacturer being 100% trustworthy. TEN uses the security of Ethereum
combined with game theory to detect and correct eventual TEE hacks.

e A system where everything is encrypted all the time is not usable. There must be a way for users to
query their data or prove it to third parties. Additionally, an existing application contract that reveals
internal state (such as the balanceOf(address) function of the ERC-20 standard used to look up
anyone's holding) need to be considered carefully; since while TEN would prevent the state of the
contract from being visible, the functions might not.

e Another critical challenge for this protocol is the prevention of MEV. Because user transactions and
execution are not visible to TEN nodes, one might naively assume that this problem is solved.
Unfortunately, that is not strictly true since aggregators might gain useful information through side-
channels and use that to extract value. For example, an aggregator might own some accounts and
submit transactions to them in critical moments and then query for results. TEN addresses this by
introducing delays in key moments to prevent aggregators from performing replay-attacks which can
generally be used for side-channels.

e A privacy-preserving platform should consider illegal usage and design mechanisms to help
application developers avoid and prevent it. An important insight in this direction is that the value of
confidentiality decays over time, to the point where transactions may just be of historical interest. For
many transactions involving value, it is critical that they are not public when processed and cannot be
front-run, but for others, they are price-sensitive for a longer period. TEN uses this insight and
implements a flexible policy for delayed transaction revelation. The knowledge that transactions
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become public in the future is a deterrent for users to engage in criminal behaviour because law-
enforcement agencies will eventually catch up. Alternative options have been considered.

¢ One crucial challenge of such a system is ensuring that some catastrophic event cannot leave all the
value locked. The mechanism that prevents this is covered in the Threat-Model analysis.

e High transaction fees are one of the main barriers to entry for Ethereum. TEN addresses this by
introducing a novel approach to calculate fees based on the actual costs of the running nodes.

Technical Background

This section briefly covers the key technologies on which TEN relies.

We recommend reading through the "Trusted Execution Environment" section because it introduces
concepts and notations used throughout the paper.

Ethereum

Ethereum is a public, transparent, permissionless blockchain system and network of nodes, supporting
account-based smart contracts, where business logic can be deployed as code to create an immutable and
uncensorable contract which can hold and control the flow of value. The Ethereum mainnet went live in
2015 and is the most mature and adopted smart contract system. Read more on the official website.

Trusted Execution Environment

A TEE is a secure area of a central processor or CPU. It guarantees code and data loaded inside to be
protected with respect to confidentiality and integrity as it is processed. TEN focuses initially on Intel's SGX,
based on the team's 5 years of experience developing a confidential computing product with it. The TEE
data cannot be read or processed outside the enclave, including processes running at higher privilege
levels in the same host.

An SGX-capable CPU has two device root keys that are fused into it by the manufacturer, the Root
Provisioning Key (RPK) and the Root Sealing Key (RSK). The RPK is known to Intel and used to prove a CPU
is genuine via remote attestation and the RSK is not known to any entity outside the CPU. These keys can
be used to create other CPU specific keys. In this whitepaper, we will refer to them as the Enclave Key (EK).
Processes and users outside the enclave encrypt data that is only meant for the enclave using keys
generated inside the enclave. When the enclave wishes to store data, it is again encrypted so that the host
(the server which stores the data) is not able to see it.

Attestation allows user verification that the enclave is running on a genuine SGX capable CPU that is
properly-patched, and the application running inside the enclave matches a particular codebase and is un-
tampered before the user shares confidential data with it. This allows the user or someone trusted by them
to audit the code of the application in advance and know for sure that only that code will see that data.

In TEN's case, the SGX application is a virtual machine largely compatible with the EVM, allowing execution
of existing Ethereum smart contracts, along with the rollup functionality necessary to interact with the L1
contract.
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The Trusted Computing Base (TCB) is defined as the set of computing technologies that must be working
correctly and not be malicious or compromised for a security system to operate. The TCB is composed of
the hardware TCB (the CPU) and the software TCB (the CPU microcode and the application). Attestation
provides to the Verifier a report containing the details about all the components of a TCB, like CPU type, the
SGX security version number (CPUSVN) and the version of the application.

An attestation report that was deemed as secure could become insecure if a vulnerability is disclosed. At
that moment, the system needs to be re-secured, a process which is called TCB recovery.

This whitepaper refers to the Attestation Report (AR) as a generic object that describes the TCB and also
contains an encryption key referred to as the Attestation Key (AK), and as Attestation Constraints (AC) to a
set of constraints that a report must satisfy to be considered secure at a point in time. The constraints will
change over time as vulnerabilities are discovered, the software is upgraded with new features or to keep
up with the evolution of the EVM. The TEN nodes will have to upgrade to continue participating in the
network.

Any message originating from an enclave can be signed with the AK. This is a guarantee for the recipient
that it must have originated only inside a valid enclave.

The diagram below is a conceptual high-level overview of the mechanism by which a TEE manufacturer and
a group of security auditors propagate trust to the output of the computing performed inside the TEE.
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A signature from the EK attests that a signed data packet originates from a genuine CPU. That is not
enough for the output of typical confidential computing use cases, as clients have to know what program
runs inside the CPU and what firmware.

To solve this problem, the TEE generates a new key (the AK) derived from the RSK, which is then included in
the attestation report, together with the software and hardware versions, and signs this report with the EK.
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By this mechanism, data packets signed with the AK include the trust from the genuine CPU and the hash
of the program attested by the group of auditors.

Rollups

The two approaches to scaling L1 blockchains are to improve the capacity of the blockchain, or move
processing away from it but tie back to it.

The first approach can make the blockchain more centralised, as the cost of node infrastructure increases
(limiting the number of participants able to afford it) or the number of nodes involved in consensus
decreases. A variation splits the accounts into shards, allowing validation to happen in parallel, and this is
the current approach on the Eth2 roadmap.

The second approach is to allow users to engage with contracts on a second-layer network of nodes, where
the majority of the processing work is undertaken. One example of the second approach is rollups, where
the L2 transactions are verified and posted in compressed form in a single rollup transaction to the L1
blockchain. There is an L1 contract which processes deposits and withdrawals. In zero-knowledge rollups,
L1 nodes can undertake a lightweight process of verification of the correctness of activity on the L2
network, whereas in optimistic rollups, the L2 transactions submitted are assumed to be correct, but
another L2 node may disprove them during a challenge window.

High Level Design

TEN is designed as an L2 protocol, where user activity is moved off-chain from the L1, and it follows the
increasingly common rollup pattern to store transaction data on the L1 chain to achieve censorship-
resistant data availability. This is leading to proposals to reduce calldata storage costs on Ethereum. Most
rollup implementations exist to provide scalability for L1 networks, but the prime objective of TEN is to
provide confidentiality. The rollups contain the entire encrypted transaction data.

L2 networks have a unidirectional dependency on an L1 network: while the L2 network relies on the L1
network to provide an immutable and public record of transaction data and to provide censorship
resistance, liveness and availability, the L1 network is unaware of any individual L2 network. L2 submitted
rollups are just normal L1 transactions.

The following diagram shows the interactions between the two decentralised networks, Ethereum (L1) and
TEN (L2): TEN is formed of Nodes called Aggregators, who compete to process user transactions, roll them
up, and submit for inclusion in Ethereum blocks. Ethereum, through its protocol, leverages its own nodes to
produce Ethereum blocks containing, amongst other things, the submitted TEN rollups.
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On the bottom right, this diagram also depicts the state of a simple rollup chain as it is found in the

sequential L1 blocks.
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On the L1 network there are several regular Ethereum contracts, referred to as Management Contracts.

Note: the L1 design is covered in more detail in L1 Contracts.

Network Management

This contract is the gatekeeper for the protocol. Any TEN node wishing to join the network will have to
interact with this contract and prove it is valid. This contract will also manage the TEE attestation
requirements and will be able to verify attestation reports.

It will also manage the stake of the participants able to submit rollups known as Aggregators.

Note: The stake is a piece of the game-theory puzzle that ensures that TEN participants have the right
incentives to follow the protocol.

Rollup Management

This module accepts rollups submitted by L2 nodes and includes them in the rollup-chain structure. It
works together with the bridge in processing withdrawal requests from users.

TEN Bridge
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This contract is very important for the solution's security since it will protect all liquidity deposited by
Ethereum end-users, and reflected in the confidential TEN ledger.

L2 Network

The goal of the L2 design is to create a fair, permissionless, and decentralised network of nodes with valid
TEEs who cannot see the transactions they are processing while collaborating to manage a ledger stored as
rollups in the L1. The ledger should preserve its integrity even in the face of catastrophic TEE hacks.

All TEN nodes have to go through the attestation process with the Network Management contract before
receiving the shared secret and participating.

Note: the shared secret is covered in the cryptography section.

{% include_relative aggregators-verifiers.md %} {% include_relative rollup-data-structure.md %}

Consensus - Proof of Block Inclusion

TEN uses a novel decentralised round-based consensus protocol based on a fair lottery and
synchronisation with the L1, designed explicitly for L2 rollups, called Proof Of Block Inclusion (POBI). It
solves, among others, the fair leader election problem, which is a fundamental issue that all decentralised
rollup solutions have to address. POBI is inspired by Proof Of Elapsed Time.

High-Level Description
The high level goals of the POBI protocol are:

1. Each round, distribute the sequencer function fairly among all the active registered Aggregators.

2. To synchronise the L2 round duration to L1 rounds. Because the L1 is the source of truth, the finality
of the L2 transactions is dependent on the finality of the L1 rollup transaction that includes them,
which means there is no advantage in publishing multiple rollups in a single L1 block. It is impossible
to decrease the finality time below that of the L1, and, on the other hand, publishing L2 rollups less
frequently means that L2 finality is unnecessarily long. The optimum frequency is to publish one
rollup per L1 block.

To achieve fairness, the POBI protocol states that the TEE can generate one random nonce each round, and
the winner of a round is the Aggregator whose TEE generates the lowest random number from the group.
The TEEs generate these numbers independently and then gossip them. The Aggregators who do not win
the round, similar to L1 miners, respect this decision because it is rational to do based on the incentive
mechanism. If they choose to not respect the protocol, they are free to submit a losing rollup to the L1,
which is ignored by all compliant Aggregators, meaning such an Aggregator has to pay L1 gas and not get
any useful reward.

The second goal is achieved by linking the random nonce generation, which terminates a round, to the
Merkle proof of inclusion of the parent rollup (which exists as a transaction in the L1 transaction Patricia trie)
in an L1 block. This property is what gives the name of the protocol. This means that an Aggregator can
obtain a signed rollup from the TEE only if it can show the rollup is based on a published rollup in a prior L1
block. Furthermore, this feature links the creation of L2 rollup to an L1 block, thus synchronising their
cadence.
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A party wishing to increase its chances of winning rounds must register multiple Aggregators and pay the
stake for each. The value of the stake needs to be calculated in such a way as to achieve a right
decentralisation and practicality balance.

It is straightforward for all the other Aggregators to verify which rollup is the winner by comparing the
nonces and checking that the rollup signature is from an approved Aggregator.

Note that the L1 Management Contract is not checking the nonces of the submitted rollups, but it checks
that the block inclusion proof is valid. The L1 contract rejects rollups generated using a proof of inclusion
that is not an ancestor of the current block.

A further issue to solve is to ensure that the host cannot repeatedly submit the proof to the TEE to try to get
a lower nonce, explained here.

Typical Scenario

1. A new round starts from the point of view of an Aggregator when it decides that someone has
gossiped a winning rollup. At that point, it creates a new empty rollup structure, points it to the
previous one, and starts adding transactions to it (which are being received from users or by gossip).

2. In the meantime, it closely monitors the L1 by being directly connected to an L1 node.

3. As soon as the previous rollup was added to a mined L1 block, the Aggregator takes that Merkle
proof, feeds it to the TEE, who replies with a signed rollup containing a random nonce generated
inside the enclave.

4. All the other Aggregators do roughly the same thing at the same time.

5. At this point (which happens immediately after successfully publishing the previous rollup in the L1),
every Aggregator has a signed rollup with a random nonce which they gossip between them. The
party with the lowest nonce wins. All the Aggregators know this, and, after a short waiting period, a
new round starts.

6. The winning Aggregator has to create an Ethereum transaction that publishes this rollup to L1.

Note that by introducing the requirement for proof of inclusion in the L1, the cadence of publishing the
rollups to the block times is synchronised. Also, note that the hash of the L1 block used to prove to the TEE
that the previous rollup was published is added to the current rollup such that the Management Contract
and the other Aggregators know whether this rollup was generated correctly.
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The following diagram depicts this sequence:
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Notation

Ethereum Network

Aggregator A

There are six elements that define a rollup :

1. The rollup parent.
The rollup height (Nth generation).

The Aggregator who generated it.

Aggregator B

The height of the L1 block that includes this rollup (L1_Block_Height).

The nonce.
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The following diagram depicts these elements:
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The notation is the following: R$Rollup_Height[$Aggregator, L1_Proof_Height, L1_Block_Height, $Nonce]_.
Note that the value of L1_Proof_Height can only be lower than L7_Block_Height.

Example: R_15[Alice, 100, 102, 20] means the rollup height is 15, the aggregator is Alice, the height of the L1
block used as proof is 100, the height of the L1 block that included the rollup is 102, and the nonce equals
20.

The Canonical Chain

The POBI protocol allows any Aggregator to publish rollups to the Management Contract, so short-lived
forks are a normal part of the protocol. The forks cannot be long-living during normal functioning because
the TENVM running inside the TEE of every node deterministically selects one of the forks as the canonical
chain and only appends a rollup on top of that.

Because the logic is identical and attested on all nodes and the TEEs receive all the relevant content of the
L1 blocks (which means they process the same input data), there cannot be any competing forks more than
one rollup deep unless there is a hack.

The rules for the canonical chain are the following:

1. The genesis rollup is part of the canonical chain and will be included in an L1 block by the first
Aggregator.

2. An L1 block containing a single rollup whose parent is the head rollup of the canonical chain included
in a previous L1 block is on the canonical chain if no other rollup with the same parent was included in
an earlier block. Any other sibling rollup included in a later block is not on the canonical chain. This is
the Primogeniture rule, where a rollup is born when included in an L1 block.

3. If an L1 block contains multiple sibling rollups created in the same round using the same L1 proof, the
one with the lower nonce is on the canonical chain.

4. If an L1 block contains multiple sibling rollups created using different L1 proofs, the one created using
the more recent proof is on the canonical chain.

Using the notation, for the same Rollup_Height, the rollup on the canonical chain is the one with:

1. The lowest L1_Block_Generation.
2. In case there are multiple matches, use the highest L1_Proof_Generation.
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3. In case there are multiple matches, use the lowest nonce.

Given that the nonce is a random number with sufficient entropy, we assume there cannot be a collision at
this point during normal functioning. In the situation where it happens, the rollup on the canonical chain will
be the one with the lowest hash.

Preventing Repeated Random Nonce Generation

In phase 3 of the protocol, the TEE of each Aggregator generates a random nonce which determines the
winner of the protocol. This introduces the possibility of gaming the system by restarting the TEE and
generating multiple numbers.

The solution proposed by TEN is to introduce a timer in the constructor upon every startup of the enclave. A
conventional timer, based on the clock of the computer, is not very effective since the host can game it.
Instead, the enclave must calculate serially (on a single thread) a large enough number of SHA256 hashes,
which it would not be able to do faster than an average block time even on powerful hardware.

This solution is effective since the code is attested and does not rely on any input from the host.

A node operator wanting to cheat would restart the enclave and quickly feed it the proof of inclusion, only
for the enclave to process it after 15 seconds, which means the operator has already missed the time
window for that rollup.

This built-in startup delay is also useful in preventing other real-time side-channel attacks, which could be
used for MEV.

Aggregator Incentives

All successful decentralised solutions need a robust incentive mechanism to keep the protocol functioning
effectively.

Compared to a typical L1 protocol, there is an additional complexity to consider. In an L1 like Bitcoin or
Ethereum, once a node gossips a valid block, all the other nodes are incentivised to use it as a parent
because they know everyone does that too. In an L2 decentralised protocol like POBI, there is an additional
step: the publication of the rollup to L1, which can fail for multiple reasons. Furthermore, the incentive
design must also consider the problem of front-running the actual rollup. For a rollup to be final, it has to be
added to an L1 block, which is where an L1 miner or staker can attempt to claim the reward that rightfully
belongs to a different L2 node.

Note that rollup finality will be covered extensively in the TEN - Ethereum interaction section.

The high-level goal is to keep the system functioning as smoothly as possible and resist random failures or
malicious behaviour while not penalising TEN nodes for not being available. We believe that penalties for
availability increase the barrier of entry, and thus make the system centralised over the long term.

TEN introduces the concept of claiming rewards independently of the actual canonical rollup chain. The
great advantage is increased flexibility in aligning incentives at the cost of increased complexity. Rewards
can be awarded in full, split between Aggregators or just enough to cover the cost of gas.

To achieve this, the protocol has to maintain a pool of tokens. Users will pay fees into this pool, while nodes
will be paid from it. During bootstrapping, the protocol will have the ability to add newly minted tokens to
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the pool. Once the network picks up, the protocol will be able to burn excess tokens.

Note, that an important assumption is that the reward from publishing a rollup will never exceed twice the
gas cost.

These are the Aggregator rewarding rules:

1. The first Aggregator to successfully published a rollup without competition in an L1 block will get the
full reward. This is the most efficient case that is encouraged. Note: Competition means another
rollup with the same parent.

2. If multiple rollups generated with the same L1 proof and different nonces are published in the same
block (the target block), the one with the lowest nonce is on the canonical chain, but the reward is
split between them in a proportion of 75/25 (this ratio is indicative only). The reason for this rule is
that it incentivises Aggregators to gossip their winning rollup such that no one else publishes at the

same time.

o There is no incentive for the losing Aggregator to publish as 25% of the reward will not cover
the cost of gas, so they will make a loss.

o There is an incentive for the winning Aggregator to gossip the rollup to everyone else to avoid
having this unwanted competition.

o In case of a genuine failure in gossip (i.e. beyond designed latency), the losing Aggregator
receives something. This is to reduce the risk of Aggregators waiting more than necessary to
receive messages from all the other Aggregators.

3. If multiple sibling rollups generated using different L1 blocks as proof are included in the same block,
the one created with the most recent proof receives the full reward.

The original winning rollup that did not get published immediately does not receive any reward since
more recent competition exists. This rule is designed to encourage publishing with enough gas, such
that there is no risk of competition in a further block. The rule also encourages Aggregators to not
wait for rollups published with insufficient gas or not at all.

This mechanism ensures rounds reset when new L1 blocks are available and the reward is up for
grabs. An actor controlling multiple Aggregators with malicious irrational behaviour can only slow
down the ledger because the rational actors will publish the rounds they win.

4. If two consecutive L1 blocks include each a rollup with the same height created from the same L1
proof, but the rollup from the second block has a lower nonce, split the reward evenly between the
two Aggregators.

Note that the rollup with the higher nonce is on the canonical chain.

The reason for this rule is that this scenario is possibly the result of rollup front-running, which is thus
discouraged as the frontrunner is consuming precious Ethereum gas and the reward will always be
less than the cost.

The even splitting of the reward also encourages the Aggregator that wins a nonce generation round
to publish as soon as possible, because publishing a block later will at best result in a small loss.
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5. If two sibling rollups created from the same L1 proof are published more than one block apart, where
the first published rollup has a higher nonce, then pay the reward in full to the first published rollup.
The reason for this rule is that the winner most likely added too little gas, and someone else spotted
the opportunity and contributed to earlier finality, which is rewarded. It adds an incentive to monitor
gas prices and pay enough to ensure their rollup is published.

The following diagrams depict some of the rewarding rules:

These diagrams highlight the decisions
aggregators have to make in different
situations, and how that affects their
rewards

Each L1 block only contains the rollup(s) that were included in that block from the
mempool; the depiction of several connected rollups in a block shows the cummulative
effect of the L2 state at that point. Rollups added in previous blocks are represented with
a dotted line. The canonical chain is represented in red.

An aggregator publishing with insufficient gas still has
a chance to claim the reward if they still retain the
lowest nonce when the round is replayed.

If someone else receives a lower nonce, there will be
no reward.

This is the incentive to add enough gas.

C

~ — 7N /|nonce=20

Lo N

nonce=10|

Aggregator 2 adds Aggregator 3 Aggregator 2 publishes an alternative
Rollup B in Block 1. publishes Rollup C Rollup C'in the next Block 3.
with insufficient gas.
Rollup C from the mempool is also
It is not included in included now.
the next block.
These are competing rollups so C'
with a lower nonce is the winner.

There is a hard limit of 2 blocks for
the reward. An aggregator can no
longer claim a reward if the rollup
wasn't published in 2 blocks.

C

Inonce=20)

N e

nonce=10)
—

This is necessary to prevent the
network from getting stalled by the
fact that there is a rollup in the
mempool with a low nonce but

Aggregator 2 adds Aggregator 3 Rollup C is still not After spending 2 blocks in insufficient gas.
Rollup B in Block 1. publishes Rollup C included in a block the mempool there is no
with insufficient gas. after the second reward paid to
block, and no other Aggregator 3 any more.
Itis not included in aggregator published Anyone who publishes
the next block. a competing rollup now will get the reward
yet. even if their nonce is
higher.
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The following diagram depicts rules in the case of front-running:

nonce=10

1 2 Note that each L1
C block only contains the
r==" r==" . = N /|once=10 rollup(s) that were
<« A |« B ||« - B |<—non?e:20 < -1 B Py included in that block
(' ConJd C_J C <d D from the mempool; the
(e depiction of several

=iy connected rollups in a
00000~ 0000:- VPOV — vocshousine

cummulative effect of

Aggregator 2 adds Aggregator 5 adds Block 3 includes Rollup D, the L2 state at that
Rollup B in Block 1. Rollup C'in Block 2, added by Aggregator 2 and point.
and this transaction is appended to the only Rollup C'
added by a colluding published in Block 2, as well Rollups added in
L1 miner/staker, as rightful Rollup C which is previous blocks are
front-running the added late from the mempool. represented with a
rightful Rollup C dotted line.
transaction submitted Since Rollup C appears as a
by Aggregator 3. sibling with a lower nonce, The canonical chain is
Rollup C's transaction Aggregator 5 (C') does not represented in red.
is left in the L1 receive any reward, while
mempool. Aggregator 3 (C) can claim

back the cost of gas.
Since there is no

competitor for rollup B Note that rollup C's

in the next block, it transactions do not affect the
means Aggregator 2 state as they are not on the
can claim the full canonical chain.

reward.

This is python-like pseudocode to calculate the rewards that can be claimed by an Aggregator for a
Rollup_Height. Note that it is not comprehensive, and there may be many competing aggregators.

# The rollup height for which we calculate the rewards
height = N

# 'heightN_L1_Blocks' is a list of all L1 blocks starting with the

_L1 Block_Height_ of the head

# of the canonical chain of the previous generation, until the block where
you encounter the

# first valid rollup of _Rollup_Height_ plus one extra L1 block.
heightN_L1_Blocks = calculateBlocks()

# List of rollups of height N found in the last block
rollups_in_last_block = heightN_L1_Blocks[-1].rollups.filter(r.height ==
height)

# List of rollups of height N found in the target block

rollups_in_target_block = heightN_L1_Blocks[-2].rollups.filter(r.height ==
height)
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if rollups_in_target_block.size == 1 and rollups_in_last_block.size ==

# There is no competition for the target rollup
fullRewardTo(rollups_in_target_block[0].aggregator)

elif rollups_in_target_block.size == 1 and rollups_in_last_block.size ==
¥

# There is competition for the target rollup in the next rollup
# Which means there is suspicion of frontrunning

target_rollup = rollups_in_target_block[0]

competition_rollup = rollups_in_last_block[0]

if competition_rollup.L1l_Proof_Height == target_rollup.Ll_Proof_Height
and competition_rollup.nonce < target_rollup.nonce:
# This is possibly front-running or failure to gossip
# All parties involved in this will make a small loss
partialRewardTo(target_rollup.aggregator, '50%")
partialRewardTo(competition_rollup.aggregator, '50%')
else:
# The target has the lower nonce or is generated with a different
proof
fullRewardTo(target_rollup.aggregator)

elif rollups_in_target_block.size ==

# Two competing rollups in the target block

# This is not a front-running situation, so eventual rollups published
in the next block do not matter

rollupl = rollups_in_target_block[0]

rollup2 = rollups_in_target_block[1]

if rollupl.L1_Proof_Height == rollup2.L1_Proof_Height:

# According to rule #2 the competing rollups will split the reward

if rollupl.nonce < rollup2.nonce:
partialRewardTo(rollupl.aggregator, '75%')
partialRewardTo(rollup2.aggregator, '25%")

else:
partialRewardTo(rollupl.aggregator, '25%")
partialRewardTo(rollup2.aggregator, '75%"')

elif rollupl.L1_Proof_Height > rollup2.L1_Proof_Height:

# According to rule #3 the rollup generated with the more recent
proof gets the reward
fullRewardTo(rollupl.aggregator)

else:
# According to rule #3 the rollup generated with the more recent
proof gets the reward
fullRewardTo(rollup2.aggregator)

else:
pass

16 /37



whitepaper.md 2025-11-05

Note that these rules are subject to adjustment based on production observations.
System Smart Contracts and Activity Rewards

TEN introduces a novel mechanism for incentivizing network activity through system smart contracts.
These contracts can programmatically reward any transaction with tokens or create live transaction
lotteries where any transaction can win prizes.

This system enables the platform to reward activity arbitrarily, encouraging user engagement and network
growth. For example, a system contract could reward users for interacting with new DeFi protocols,
participating in governance, or simply maintaining activity during network bootstrap phases.

The lottery mechanism creates additional excitement and value for users, where routine transactions have
the potential to win substantial rewards. This gamification of network participation helps drive adoption
while maintaining the core functionality and security of the platform.

Rollup Evolution

This diagram shows a series of edge cases and what happens.

Note that each L1 block only contains the rollup(s) that were included in that block from

the mempool; the depiction of several connected rollups in a block shows the Aggregators 1,2 are attached
cummulative effect of the L2 state at that point. Rollups added in previous blocks are to L1 nodes holding a forked
represented with a dotted line. The canonical chain is represented in red. Block 4, and Aggregator 1

adds Rollup E in Block 4.

4 - -
r=N r-A
A Cire D |
«iB <;_—_< .-
CJ c!
1 1
(G
Aggregator 2 adds Both Aggregator 3 Aggregator 2 adds Rollup D in T Aggregator 5 adds Rollup F in
Rollup B in Block 1. and Aggregator 5 Block 3, linking to the correct r=2 r=AN Block 5. Block 4' is no longer
submit transactions Rollup C. Rollup C' will be PR C e D} on the longest chain and will
with competing ignored.. L fl-2 L= be ignored. Any transactions
rollups C and C". C U f"l‘l previously included in Rollup
 C E' will be processed
Only one of them can L--J subsequently.

be on the canonical W
chain.

Aggregators 3,4,5 are

Note that the attached to L1 nodes holding a
incentive mechanism forked Block 4', and

does not encourage Aggregator 4 adds Rollup E'
this scenario. in Block 3, linking to the

correct Rollup D.

Detailed Technical Design

This section describes key TEN component designs.

Developer Features

TEN introduces several developer-focused features that enhance the programmability and user experience
of smart contracts while maintaining privacy guarantees.

Session Keys
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Session keys enable seamless user interactions by allowing developers to authorize subsequent
transactions without requiring manual signature approval for each operation. With a few API calls,
developers can configure transaction flows to use session keys, dramatically improving user experience for
interactive applications.

This feature is particularly valuable for on-chain gaming, where users would otherwise need to sign
transactions every few seconds. Session keys maintain security while eliminating the friction of constant
wallet interactions, enabling truly Web2-like experiences on-chain.

Secure Entropy

TEN provides secure, verifiable randomness natively within every transaction execution context. This
eliminates the need for external oracle calls or complex commit-reveal schemes, reducing costs and latency
while improving security.

The entropy is generated within the TEE environment using hardware-based random number generation,
ensuring that random values cannot be predicted or manipulated by node operators or external parties. This
enables fair gaming, secure lotteries, and other applications requiring trustworthy randomness.

Asynchronous Game Move Execution

To prevent exploitation in on-chain games, TEN introduces asynchronous move execution. Game moves are
submitted in one transaction but executed separately within the same block, providing the same latency
characteristics while eliminating timing-based attack vectors.

This architecture prevents clever users from exploiting transaction ordering or execution timing to gain
unfair advantages. The move execution occurs deterministically within the block but is isolated from the
submission transaction, maintaining fairness across all participants.

Precise Timestamping

Every transaction receives a precise timestamp indicating when it reached the sequencer, enabling time-
sensitive applications that require exact timing guarantees. This feature supports continuous-flow games
like "Aviator" or competitive timing-based applications.

The timestamp precision enables developers to create sophisticated time-dependent logic, competitive
games where milliseconds matter, and financial applications requiring exact execution timing. This brings
Web2-level temporal precision to decentralized applications.

{% include_relative cryptography.md %} {% include_relative account-based-state.md %} {%
include_relative I1-contracts.md %}

TEN and Ethereum Interaction

TEN is a confidential extension to Ethereum, and thus assets have to move freely between the two
networks.

All sidechains and L2 solutions have developed solutions to the mismatches between the different models
of the two networks, and typically there is a bridge contract that safeguards assets. The difference between
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sidechains and L2 solutions is that mismatches are more significant for sidechains because they have their
own finality and security mechanisms, and thus the bridge logic is either very complex or centralised.

Deposits

The user deposits supported ERC tokens into the well-known address of the Bridge contract, and once the
transaction is successfully added to a block, the TEN-enabled wallet automatically creates an L2
transaction, including proof of the L1 transaction. The exact amount is credited with wrapped tokens on the
user's account on TEN.

The fact that the finality of L1 transactions is probabilistic makes crediting the L2 account not
straightforward. Most solutions solve this problem by waiting for a confirmation period before crediting the
account. TEN takes a different approach and introduces a dependency mechanism between the L2 rollup
and the L1 blocks.

The rule is that the L2 rollup that includes the transaction that credits the TEN account has a hard
dependency on an L1 block, and the Bridge contract enforces that it is one of the ancestors of the current
block. If the L1 deposit transaction is no longer in the canonical L1 chain, it automatically invalidates the
rollup that contains the L2 deposit transaction, and the L1 deposit will only be recognised as the basis for an
L2 rollup credit transaction when it has been included in the canonical L1 chain.

The interaction is shown in the following diagram:
~User Obscuro Wallet

L1 Wallet L2 Wallet Management Contract Obscuro Node

| transfer ERC‘ token|from L1 wallet to Bridge contract pool |
I I |

wait to be mined in gne block

create "deposit” L2 txn including MTree proof pf L1 deposit

if proof valid, include L2 txn in current rollup with dependency to L1 block

internally update L2 user ledger balance with wrapped token
publish rollup
alt / [the rollup dependency is the hash of a prpvious block]
accept rollup
_ emit encrypted event of successful balance ypdate (as long as there is no L1 or L2 block reorg)
[the dependency is NOT the hash of a previous block]
reject rollup

L1 Wallet L2 Wallet Management Contract Obscuro Node
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See also the Data model section and the following dependency diagram.

Obscuro Wallet L2 Node Deposit Steps
1. The Wallet L1 module connects
»{11 2 to an L1 node to deliver an
Wallet Module | |Wallet Module ERC20 deposit transaction to

the Bridge contract on L1.

The L1 block is created as
e Block 1, and the deposit
f transaction appears in the L1

n

transaction log. The L1 wallet

module takes the Merkle proof

of deposit from the L1
transaction log, and provides it
@ o to the L2 wallet module.

3.The L2 wallet module connects
L1 Block 1 l L1 Block 2 L1 Block 3 to an L2 node, and passes the
proof of deposit in an L2
transaction.

4. The L2 node constructs a Rollup
D containing the deposit proof,
which is added to Block 3.

5. The Wallet L1 module collects
the deposit / L2 synchronisation
proof and updates the

[ahuiuin] [giaiale} [aiuiuinl ] an,
-] A :{ < B :4—{ C -] C :4t user-visible balance.
(S Cod Cond

ERC20
Deposit

Note: The deposit L2 transaction cannot be fully encrypted because the Aggregator has to decide whether
to include it in the current rollup based on the chances of the L1 block it depends on being final.

Withdrawals

The high-level requirement for the withdrawal function is simple: allow TEN users to move assets back into
the Ethereum network. The problem is that this is where the most significant threat against such a solution
lies because there might be a large amount of locked value.

The challenge is to implement this functionality in a decentralised way by defining a protocol and economic
incentives.

Due to the sensitivity of this function, many sidechains and L2 solutions rely on multi-signature technology
to control the release of funds. Optimistic Rollups rely on a challenge mechanism during a long waiting
period before releasing funds, powered by economic incentives.

TEN uses TEE technology, but it cannot leverage it for this aspect because of our threat model. The Bridge
Contract could release funds based on a signature from an attested TEE if it were invulnerable, but since
that is not the case, the solution is to use economic incentives on top of the POBI protocol.

Rollup Finality

The general rule is that withdrawals can be processed only when a rollup is final. This means this is the
protocol for the finality of the TEN chain relative to the Ethereum chain.

Rule 1 - The standard delay period
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In the usual case, a rollup from the canonical chain (see POBI protocol) is final if a standard number of
blocks corresponding to a period of 1 day has passed from the Ethereum block where it was published.

¢ Note 1: The period is measured in Ethereum blocks because the delay is stable on average between
blocks.

¢ Note 2: The reason for this period is to give honest nodes the chance to "challenge" the rollup if it is
malicious.

e Note 3: The period is inverse to the number of L2 nodes. It should be long enough to give honest
participants the chance to react and publish in the face of aggressive censorship attempts against
them, but short enough not to degrade the user experience. We estimate that once the network
reaches a healthy number of nodes, we can reduce it to 50-100 blocks (~ 10 minutes).

Rule 2 - The competing forks

Assuming the period chosen at rule #1 is enough, the only possible write attack performed by an actor that
could hack the TEE manifests as multiple parallel forks at least two rollups deep. This is because all valid
TEEs run the same attested code that chooses the same canonical chain from the rollups published in the
L1 block presented as proof. If the Management Contract notices multiple forks, the rule is that finality is
suspended on all forks, thus, withdrawals are suspended. Likewise, if one of the forks becomes inactive, the
rule is that all rollups on the alive fork become final once a standard period of 1 day has passed from the last
L1 block that contained a rollup published on the inactive branch.

¢ Note: This rule degrades a write-attack into a Denial of Service attack on the withdrawal function.

¢ Note2: Assuming there are honest participants, the actual canonical ledger keeps growing, including
user transactions.

¢ Note3: The attacker has to spend Ethereum gas to keep the malicious fork alive.

Rule 3 - addressing the DoS on finality

Since rule #2 transforms any attack into a DoS attack, the protocol has some mechanisms to keep user
experience satisfactory even in the extreme case of a TEE hack.

1. The ultimate backstop is the "Attestation Constraints" rules. Forks in the canonical chain are clearly a
breach of protocol, caused either by a TEE hack or a protocol hack. This is ultimately resolved with
software or, at worst, hardware updates. Once the management Contract forces an upgrade, the
attacker will no longer be able to create malicious rollups, and thus the fork becomes inactive, and
finality resumes on the valid fork.

2. For any users with an L2 node, it is obvious which is the canonical chain, as it is the one that does not
fail. Market makers operating on both L1 and L2 can step in and absorb the withdrawal requests of
users at a slight discount without taking any actual risk.

The above rules will, in practice, prevent this type of attack, and if it happens, offer a practical solution for
users. In addition, the protocol has yet another backstop to address the extreme case of a very persistent
attacker.

The network governance model allows any user to trigger the forced finality procedure by staking or voting
on one of the competing rollup chains. The minimum stake is a percentage of the amounts being withdrawn
on that branch, set through governance. Backers of the other chain are obliged to stake a similar or higher
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value to compete. The decision process is run as an auction, where the party that loses also loses their
bids. When concluded, all rollups on that chain are considered final, and withdrawals are executed.

Withdrawals protocol

Each TEE signed rollup contains a plaintext list of withdrawal requests. See: Data Model.

The Bridge contract keeps track of these requests and executes them at different times, based on the
finality status of that rollup.

The withdrawal process is indicated in the following diagram:

Obscuro Wallet L2 Node Withdrawal Steps
1. The Wallet L2 module makes a
1 2 withdrawal request to an L2 node.

Wallet Module 2.The L_2 node creates Rollup B which
contains the request.

e 3.The L1 wallet module connects to an
a L1 node, and receives the Rollup B
transaction containing the withdrawal.

4.The L1 wallet waits N L1 blocks and

L. |Wallet Module

constructs a withdrawal request to the

Bridge contract referencing Rollup B.
bw 5. If Rollup B remains valid, on the
canonical rollup chain, and there is no

e * conflicting Rollup B’ (indicated with a
L1 Block 1 L1 Block 2 L1 Block 3 X which might indicate TEE
| compromise), the Bridge contract will
ERC20 pay the ERC20 token to the address
\Withdrawal dictated in the withdrawal request.
- - - [}
' 1 1 O |
,’: B 1 A B 1
S A JX
r--ﬂ” [shainin} Py oA e
4—: " I 4_: ¢ : 4-: ° :4: ¢ @
(S [} Cand e

TEN public events

Ethererum application developers can use a confidential L2 like TEN for some jobs that are not possible
otherwise.

For example, an L1 smart contract organises a fair lottery that needs a reliable random number generator
that the miners cannot game.

Another example is publishing the result of a poker game played inside TEN, which the L1 contract can use
to make a payment or update the tournament results.

The challenge for achieving this functionality is that the data originating in L2 has to be final. Luckily TEN
has this mechanism already in place for processing withdrawals. Applications running inside TEN can emit
special types of events called Public Events, which the OVM will add in plaintext into a dedicated data
structure in the rollup. The _Rollup Contract _ first processes the rollup, and then once they reach finality, it
exposes these events to external contracts.

Note: The fair lottery can be implemented in two steps to avoid any possible influence. The implementation
can use the submarine technique and first publish the hash of that number in an event, and a few blocks
later publish the actual number in a different event.
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Threat Model

TEN is different from traditional L1 or L2 solutions primarily because data is stored and processed privately
in trusted execution environments, which brings a new set of threats. Compared to other L2 solutions, the
decentralised nature of the POBI protocol also brings some new threats.

The main threat to any ledger technology is data corruption, also known as a safety failure. It could take the
form of stealing assets, double spending assets, or, more generally, adding illegal entries. Leading
blockchains solve this problem by implementing a Byzantine Fault Tolerant (BFT) consensus between
independent parties and creating incentives to ensure that anyone who breaks the rules will not be
rewarded or will even be penalised. The most extreme attack is a 51% Sybil attack, where the attacker
somehow gains the majority of the decision power (computing power for proof of work or stake for proof of
stake) and can rewrite the history. This attack manifests as replacing an existing valid transaction with a
valid competing transaction. While the ledger remains logically valid, this is equivalent to stealing for the
beneficiary of the first transaction. If the attacker tried to physically corrupt the ledger, everyone would
ignore the invalid block. The best defence against this attack is to ensure that multiple independent
powerful actors have no incentive to collude.

The general principle of the TEN protocol is that it reverts to the behaviour of a typical non-confidential
blockchain in case of hacks on the TEE technology. In other words, the safety of the ledger does not
depend on the hardness of the TEEs; instead, what happens is that attackers can read transactions and
data. Also, TEN does not delegate safety to a single actor by planning to support TEEs from multiple
hardware manufacturers. In case of severe attacks, there are multiple mitigation mechanisms in place, the
ultimate being that the L2 ledger is frozen, and everyone has the chance to withdraw using balance proofs.

TEN achieves data availability in the same way as all the other rollup solutions; the L1 is the source of data
truth for the L2 network. Any L2 node with a valid TEE in possession of the shared secret can download the
rollup chain from the L1, calculate the entire state inside its encrypted memory, and at the same time
validate all transactions.

The following sections analyse the different threats against the TEN protocol.

Threats to the TEE Technology

The TEN design considers that the TEE technology and the program inside are not easily hackable, so the
protocol is not optimised to handle them. Attacks on TEEs have occurred in laboratories, so a secondary but
essential concern is to prevent ultra-sophisticated actors with the ability to hack this technology from
stealing funds or breaking the integrity of the ledger.

The threat model of TEN is that sophisticated attackers run an Aggregator node on a machine with a TEE
they control, have access to the master seed and the entire ledger, and run any possible attack on it,
including attacks on the physical CPU.

Assuming that such attacks are successful, the attacker can limit themselves to read-level access or an
attempt to corrupt the ledger using a write-level attack.

Read-Level Attacks
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Read-level hacks happen when the attacker can extract some information from the TEE. This threat is
specific to confidential blockchains.

The only way to defend against these attacks is to carefully audit the code and keep the Attestation
Constraints up to date. If this attacker is discreet, the information leak can continue until a software patch is
published or until new hardware that removes this attack is released.

Another way to defend against it which will be considered in future versions, is to implement a scheme
similar to key rotations.

The least severe read attack is a side-channel where the attacker can find information about a specific
transaction. The most severe is when the attacker can extract the master secret and read all present and
future transactions.

If such an attack is successful, the network is equivalent to the behaviour of a typical public blockchain
where all transactions are public, and MEV is possible.

Write-Level Attacks

Write-level hacks are powerful in theory since they could enable the attacker to write to the ledger and thus
be able to break its integrity if there were no other protections.

A write-level hack could happen if an attacker extracts the enclave key and signs hand-crafted rollups that
contain invalid transactions or balances.

Note: This type of attack is viewed as the main threat to the protocol and thus handled explicitly.
The mechanism to prevent this attack is described in detail in the Withdrawals section.

The high level goal of the protections is to transform such an attack into a liveness attack on the withdrawal
function.

Colluding Write-Level Attacks

An extreme variant of the Write-level attack is performed by a powerful group that hacked the TEE and was
able to take complete control of all the Aggregator nodes.

The defence against this attack is to incentivise a reasonable number of Verifiers to watch the TEN ledger in
real-time. These actors will detect a malicious head rollup and notice that no other valid fork is being
published.

Note: One such actor monitoring the network will be the TEN Network Association, which has the mandate
to keep the protocol functioning correctly. The protocol also rewards other independent parties to take on
this job by assigning random rewards to Verifiers who can prove they are active.

Any L2 node can become an Aggregator quickly by benefiting from the censorship resistance of Ethereum.
To counter the attack, they will have to pay the stake and publish a correct rollup.

Attacks Against The Fair Lottery That Designates The Winner Of The Round

The POBI protocol assigns a leader each round by using random numbers generated inside the TEE. An
attacker that can hack the technology could generate a well-chosen number and thus win each round. This
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is not an attack against the safety of the ledger and is not of great concern.

If some Aggregator wins statistically many more rounds than they should, it will highlight the problem to the
community.

A more dangerous variation of the attack is when the attacker can also read transactions and thus front-run
and extract value.

Note: This area is under research.

A variation of this attack is when the attacker cannot directly hack the TEE, but it is restarting the TEE in the
hope of generating a lower nonce and thus improving their chances. This threat is mitigated by a delay
introduced at the startup of the OVM, which will cause the attacker to miss out on that rollup cycle.

Other Threats To The Protocol

This section analyses threats not directly linked to the TEE, although a hack against the TEEs might amplify
them.

Invalid Rollup Attacks

The Rollup Contract only accepts signed rollups from Aggregators that can prove their TEE attestation, and
unless the TEE itself is corrupted, it is impossible to publish invalid rollups. This means that such an attack
will become a liveness attack when forks are detected in the rollup chain.

Empty Rollup Attacks

An Aggregator winning a round can freely publish empty rollups, but that would not harm the system if there
were multiple independent Aggregators. It will just slow down the network. TEN disincentivises this attack
since the reward for the publisher is linked to the fees collected from the included transactions.

Sybil Attacks

This section analyses the threats that a powerful adversary who can create many Aggregators can pose on
the protocol.

The reasoning around this attack is quite different from typical public blockchains.
There are two ways to run this attack against TEN depending on the capabilities of the attacker:

1. The attacker sets up N CPUs with TEE and pays the stake for each of them, where (N >
Total_Number_Of_Aggregators [ 2).

2. The attacker hacks the TEE and can impersonate many TEEs limited only by the stake. This attack
has been analysed in the "Colluding write-level attack".

Sybil Attack Without Hacking The TEE

If the attacker cannot hack the TEE, they cannot deviate from the canonical chain or insert illegal
transactions, as the attested software will not let them. Having a majority on the TEN network will not help
with this. An attacker who wants to perform a double-spend attack on TEN will have to change the
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canonical chain already published in L1 blocks. To perform a double spend, the attackers have to perform a
double-spend attack on the L1 blocks themselves that contain the rollups.

Economical Sybil Attacks

Another type of attack, which a well-resourced actor can perform, is controlling many Aggregators to make
a good return from the rewards. The more Aggregators someone controls, the more chance of getting a
winning nonce.

There is no risk in altering the ledger or performing double-spend attacks. There is no risk of a Denial of
Service attack either, by refusing to publish winning rollups since the incentives encourage other actors to
quickly fill in gaps and publish rollups.

There are no risks of driving other Aggregators out of business by denying them the chance to win rollups
since they will get the reward of being active nodes.

Catastrophic Events

One of the worst scenarios is a catastrophic event that leaves all the value locked.

This could happen in theory if all registered TEEs were simultaneously physically destroyed, and thus the
master seed was permanently lost.

If a single TEE is not physically destroyed, and a single Ethereum node has a copy of the L1 ledger, the
network can be restarted, since all the required information is stored on the L1, including the master seed
encrypted with the key of the surviving enclave and all the rollups.

The defence against this is to achieve a reasonable decentralisation.

MEV By TEN Aggregators

Transactions and processing are hidden from node operators. Still rollups contain some information and the
node operator can query the balance of accounts they control.

To make this attack impractical, TEN introduces a slight delay that preserves the user experience of public
blockchains.

The TEE will emit events and respond to balance requests only after it received proof that the rollup was
successfully published in an L1 block. This mechanism will prevent an Aggregator from probing for
information while creating a rollup.

An Aggregator wishing to attack this scheme would have to quickly create valid Ethereum blocks while
executing user transactions, which is highly impractical since there is a hardcoded minimum value for the
mining difficulty.

Threats To The POBI Protocol

The POBI protocol handles most failure scenarios using a set of incentive rules.

1. The winning sequencer does not publish
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The winning Aggregator is incentivised to publish the rollup in order to receive the reward, which means this
scenario should only occur infrequently if the Aggregator crashes or malfunctions. If it happens, it will only
be detected by the other Aggregators when the next L1 block does not contain the winning rollup that was
gossiped about.

In this situation, every Aggregator will:

e Discard the current rollup.

¢ Unseal the previous rollup.

e Add all current transactions to it.

e Then seal it using the last empty block.
e Gossip it.

In effect, this means that the previous round is replayed. The winning Aggregator of this new round has
priority over the reward in case the previous winner is added in the same block.

2. The winning sequencer adds too little gas, and the rollup sits in the mempool unconfirmed

This scenario has the same effect as the previous one is handled in the same way. If the rollup is not in the
next block, the round is replayed.

Publishing with insufficient gas is, in effect, punished by the protocol because it means that on top of
missing the rollup reward, the Aggregator also pays the L1 gas fee.

Competing L1 Blockchain Forks

In theory, different L2 Aggregators could be connected to L1 nodes that have different views of the L1
ledger. This will be visible in the L2 network, as gossiped rollups pointing to L1 blocks from the two forks.
Each Aggregator will have to make a bet and continue working on the L1 fork that it considers to be
legitimate, the same behaviour as any L1 node.

This is depicted in Rollup Data Structure.

If it proves that the decision an Aggregator made was wrong, it has to roll back the state to a checkpoint
and replay the winning rollups.

Trust Model

The analysis in this section is based on a framework defined by Vitalik Buterin, the creator of Ethereum.

TEN is slightly different from typical blockchains or L2s because it introduces another actor into the trust
model, the hardware manufacturer.

These are the questions that will be answered using the terminology from the framework.

1. How many people do you need to behave as you expect? Out of how many?

2. What kinds of motivations are needed for those people to behave? Do they need to be altruistic or
just profit-seeking? Do they need to be uncoordinated?

3. How badly will the system fail if the assumptions are violated?

Actors

27137


file:///Users/revelation/Projects/obscuro.github.io/obscuro-whitepaper/rollup-data-structure
https://vitalik.ca/general/2020/08/20/trust.html

whitepaper.md 2025-11-05

The following groups are actors in the system.

1. The TEN network may contain a few thousand nodes, from which a minority core set will be
Aggregators and the rest Verifiers. The governance body can control this number by setting some
parameters.

2. Another important group in this is the token holders, who have governance powers.

3. The supported hardware TEE manufacturers.

4. The auditors.

Notation

1. TEN_N - number of TEN nodes ~ 1000.

2. Ethereum_N - number of Ethereum nodes.

3. TEE_Manufacturer_N - number of manufacturers. Small number, but composed of large reputable
companies.

4. Token_Holders_N - number of TEN token holders. Many thousands.

Liveness

There are multiple aspects to consider when analysing the liveness trust model. Since TEN is fully
decentralised at the network level, as long as one single Aggregator is alive, the network is alive and
processing user transactions.

For transaction processing: 1 of TEN_N, where the motivation of nodes is profit-seeking.

For processing withdrawals and thus reaching finality, the analysis is more complex. Since withdrawals are
processed automatically from the instructions found in the rollups, the trust model for the liveness of this
feature is the model for safety.

Safety
The safety of TEN is based on a couple of layers, which transform a safety attack into a liveness attack.
Note that the safety of the ledger is at risk only if there are hacks in the confidential hardware technology.

Given that hardware manufacturers are generally large and reputable companies, they act as the first
barrier. Their motivation is ultimately profit-seeking because vulnerabilities in the hardware they create will
lead to lower sales and reputational damage.

Hardware layer: 1 of TEE_Manufacturer_N, where the motivation is profit-seeking. Note that this assumes
that the hardware manufacturer introduces a bug in the TEE implementation to attack the ledger. Normally
the threat is lower since a single user with a valid TEE by any manufacturer will be able to stop an attack.

If there is a successful attack against the TEE, the next defence is a single active L2 node that publishes a
valid rollup. 1 of TEN_N, where the motivation of nodes is profit-seeking.

The next line of defence are the token holders, who will vote on L1 to update the Attestation Constraints, to
fix the vulnerability. They are invested in the community because they hold the token, which means they
profit if it functions correctly: Token_Holders_N/2 of Token_Holders_N, where motivation is profit-seeking
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Note that the attacker is not directly profit seeking because there is no possibility to withdraw assets until
the fork is resolved.

How Badly Will The System Fail If The Assumptions Are Violated?

If all supported hardware manufacturers colluded, they would be able to break the safety of the ledger.

Governance

Governance for the TEN protocol, the reference implementation, and the network configuration will be
made explicit and visible to all. TEN governance thinking is derived from the experience of Bitcoin and
Ethereum.

There are several types of control exercised in a decentralised system:

1. Explicit control exercised by a group of people using direct signing or voting.

2. Implicit control implemented in an immutable protocol.

3. Implicit control implemented in a protocol that itself is represented by an open-source codebase that
is mutable.

Note that almost nothing is truly immutable because a codebase or even hardware executing even the most
immutable protocol can change its behaviour, or it can be changed. In theory, a truly immutable system
could be achieved using various hash constraints within TEEs; however, allowing for upgrades is a more
desirable outcome. Ultimately, for all other cases, there is an explicit governance process somewhere.

Bitcoin miners, for example, have some power to determine the rules by choosing which version of the core
code to install and to produce blocks with. If there is disagreement, there is a fork, and the user community
ultimately decides what value to assign to each fork. This is only a problem if the competing forks have
similar mining power, and thus security. For day-to-day upgrades, miners have the de-facto decision power,
but in case of disagreements, the users have the ultimate power through free markets. This is currently the
golden standard for decentralised governance, with advantages and disadvantages.

It gets even more complicated on networks like Ethereum with smart contract capabilities. On the one hand,
similar to Bitcoin, the end-users decide which miners have chosen the correct version. On the other hand,
the applications running on top of Ethereum have their governance requirements. In the early days, The
DAO fell into the second category: Implicit controls implemented in an immutable protocol., but it was
exploited, and in addressing this by forking Ethereum and indirectly creating Ethereum Classic, it became
apparent that there was actually a mutable codebase behind the immutable protocol (the Ethereum
codebase itself). It also became apparent that users have the ultimate power as they indirectly voted with
their wallets on the preferred approach of handling that hack, and Ethereum Classic has much lower
adoption than the mutated Ethereum.

After that hard lesson, most Ethereum smart contracts have component contracts that can be upgraded
through an explicit governance process since it is unlikely the community will again provide "get out of jail
free" cards to application developers. Sometimes the governance is obfuscated, but generally, if the
contract is upgradeable, it means someone is in charge.

The key difference between the golden standard of Bitcoin, and typical smart contract governance, is that
the end-users no longer have any power to choose which "smart contract fork" they prefer. Using the
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original smart contract and adding some value to it, they are at the mercy of the application governors.

Since the TEN protocol is anchored in Ethereum as a smart contract, it cannot rely on TEN end-users to
hold the ultimate power. The next best thing is to be very explicit about all the system's controls and
achieve separation of decision-making (which can be devolved to token-holders and articulated in a
governance specification as proposals) from execution (which relies on individuals pushing buttons).

TEN Controls

Building on the above, the following controls are exercised within TEN.
1. The TEE Attestation Constraints.

The Attestation Constraints (AC) control which software is allowed to run inside the TEE and can process
the user transactions and create the rollups. A group of independent, reputable, and competent security

auditors has to analyse the code and approve it by signing it carefully. The constraints contain the keys of
the approved auditors.

The parties who have the power to set the AC and thus appoint auditors ultimately control the software.

This concern is not entirely different from the smart contracts security auditors, except that typically users
decide which auditors they trust by using or not using those contracts.

2. Administration Of Ethereum Management Contracts.

Like most other Ethereum applications, these contracts will have upgradeable parts to cater for bugs and
new features. Whatever is upgradeable means that the administrators have full control over those aspects.

1. Bridge logic
2. Rollup logic
3. Attestation logic

In the example above, the auditors are a fixed list. However, that might not be practical, as companies might
appear or disappear. The list of approved auditors has to be managed by a proposal and vote process by
the community without any requirement for central intervention. Going a level deeper, the code that
manages this process might need to be upgradeable, so someone ends up controlling it.

3. Creating Rollups

Another power, equivalent to the L1 stakers or miners, is held by TEN Aggregators. They run attested
software and hardware and have paid a stake.

They have the power to append to the L2 ledger, but they do not have the power to choose competing
software and thus create forks.

4. Canonical Rollup Chain.

In a typical L1, the canonical chain is ultimately decided by its users from one of the competing forks
because the ledger is ultimately coupled to the value of the coin.
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In TEN, the Aggregators have to run attested software, which constraints their free will unless they can hack
the TEE technology.

According to the rules implemented, a valid TEE does not sign a rollup building on top of a chain that is not
canonical, so any hack is immediately visible.

Additional complexity involves the withdrawal process, which depends on assured finality on the canonical
chain.

5. Slashing The Stake Of Misbehaving Parties.

Aggregators that hack an enclave and attempt to break the ledger's integrity are discovered by the protocol
and are punished by slashing to disincentivise such behaviour further.

Slashing is an implicit process carried out by the Management Contract based on predefined rules.
However, ultimately it is itself controlled by the code governance.

6. Expected Monthly Operational Cost For Nodes

TEN has a fee structure that delivers a predictable income for node operators and a predictable fee for
users. In order to derive a fee that sufficiently compensates nodes, a value that represents the monthly
operational cost for each node must be set. This variable also has the power to increase or decrease
demand for running a node helping ensure a balance between decentralisation and end-user cost.

Appendix

Contributors

The TEN project is decentralised in nature, and this whitepaper has benefited enormously with feedback
from the following contributors:

¢ Richard Gendal Brown
e Mike Hearn

e Moritz Platt

e Tim Brinded

e Fred Dalibard

e Stefan lliev

e Zbigniew Czapran

Additional feedback is welcome, and all reviewers will be credited.

Glossary

Aggregator A node that participates in an L2 network and collaborates with other Aggregator nodes to
manage the L2 contracts and confirm correctness of transactions. Specifically, it participates in transaction
gossip, and may propose transaction rollups to be registered with the L1 blockchain.

Attestation Constraints Means of controlling which software is allowed to run inside the Trusted Execution
Environment.
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Automated Market Maker | AMM Uses liquidity pools to allow digital assets to be traded automatically and
without permissions.

Block Reward An amount of OBX which is given to node operators to cover their costs to validate and
publish blocks.

Enclave Key | EK Collection of one or more cryptographic keys used for encrypting and decrypting data
unique to a specific enclave, digitally signing data and identifying a Trusted Execution Environment.

ERC-20 Ethereum Request for Comments 20, proposed by Fabian Vogelsteller in November 2015, is a
token standard that implements an API for tokens within Smart Contracts.

Ethereum Virtual Machine | EVM A virtual computer whose existence is maintained by thousands of
connected real-world computers running an Ethereum client.

Gas The unit that measures the amount of computational effort required to execute specific operations on
the Ethereum network.

Gas Price The levy imposed for every computation executed on the Ethereum network to encourage good
behaviour, e.g. prevent bad actors from spamming the network.

Genesis Enclave The first Trusted Execution Environment to join a new network. The Genesis enclave
propagates the master seed to the other attested nodes by encrypting it with specific Trusted Execution
Environment keys.

Host The party controlling the physical server that runs the Trusted Execution Environment. In the threat
model of typical confidential computing applications, including TEN, the host is an adversary of the system.

L1 Management Contract The smart contract that runs on Ethereum and handles all L1 concerns.
Layer 1/ L1 The public Ethereum blockchain and network.

Layer 2 [ L2 A second network built on top of an L1 network and dependent on it. An L2 network expands
on the capabilities of the L1 network by increasing capacity or enhancing functionality.

Maximal Extractable Value | MEV Participants in the network may extract value by observing user
transactions and then preempting them by inserting their own transaction ahead in the processing queue
and influencing the price of an asset in order to extract a profit.

Non-Fungible Token [ NFT A unique and non-interchangeable unit of data stored on a digital ledger.

TEN Public Events Special events emitted by L2 contracts that are included in the rollups in plaintext, and
are exposed to L1 contracts once rollups reach finality. It is a mechanism by which TEN can publish
information.

TEN The utility token used by TEN.
Off-Chain Activity happening away from the Layer 1 blockchain.

Optimistic Rollup Optimistic rollups assume that all transactions are valid and submit batches without
performing any computation. They include a challenge period during which anyone can dispute the
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legitimacy of the data contained in a batch. If a fraudulent transaction is detected, the rollup executes a so-
called fraud proof and runs the correct transaction computation using the data available on Layer 1.

Over-the-counter | OTC A venue to provide bespoke financial agreements or options negotiated between
counterparties as opposed to being listed on an exchange.

Patricia Tree Root A Patricia Tree (or Trie), is a data structure used in the Ethereum model to represent the
receipt trie, the world state trie, the account storage trie, and the transaction trie. Only the root node of the
trie is stored in the ethereum block, and it represents a single cryptographic proof for the entire state.

Proof Of Block Inclusion | POBI TEN's novel decentralised round-based consensus protocol based on a
fair lottery and on synchronisation with the L1 designed for L2 rollups.

Rollup L2 solutions that perform transaction execution outside the main L1 chain, but post transaction data
on L1. A rollup is a batch of transactions that were executed by the L2 Verifiers.

Root Provisioning Key | RPK A cryptographic key randomly created and retained by Intel. It is the basis for
how the processor demonstrates that it is a genuine Intel SGX CPU at a specific trusted computing base.

Root Sealing Key | RSK A cryptographic key that is unique to an enclave which that enclave uses to
encrypt and decrypt data stored outside the enclave boundary.

Sequencer A sequencer is the selected Aggregator which builds a rollup in a round.

SGX Software Guard Extensions, a technology provided by Intel, a major CPU manufacturer. An SGX CPU
has an area for encrypted computation, which the operator cannot access, secured by a private key burnt
into the CPU during manufacture.

Smart Contract /| Contract A user application running on a blockchain network which holds data or state,
responds to user commands, and may store and manage assets or money.

Stake A non-negligible amount of value which is given over to an activity or process to demonstrate
commitment to follow the rules for that activity or process.

Trusted Execution Environment | TEE An environment where contracts may be managed in a
deterministic, repeatable and auditable way, based on a set of trust dependencies.

Trusted computing base | TCB The set of computing technologies that must be working correctly and not
be malicious or compromised for a security system to operate.

Utility Token Tokens which are intended to provide digital access to an application or service.

Verifier A light L2 node which observes transaction rollups published to the L1 blockchain, and can
participate in possible disputes. Any Verifier can become an Aggregator by registering on the L1 contract
and pledging some stake.

ZK-rollups Zero knowledge rollups generate cryptographic proofs that can be used to prove the validity of
transactions.

Data Model
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This diagram shows the data structure for the Management Contract and Aggregator:

[ ManagementContract

-,

M Amounts deposited by users
O deposits: Map<ERC20, Amount=

/| Registered Aggregators
The contract checks the attestation

0 aggregators: List=Aggregator=

M Amounts staked by Aggregators
O stake: Map<EthAddress, Amount=
/I This isthe public key which users must use to encrypt transactions
N The private key is known anly to enclaves
0 networkkey: PubKey
/Various parameters
O networkParameters: Map<5tring, Object>

M Mormally this list has anly one element -which isthe head of chain

By allowing forks we allow the community to vote for the right chain

] HeadRoIIups: List=5ignedObscuroRollup=

[/ This iswhere the secrets are kept
N Encrypted with the key of each enclave
1t will represent a good image of how many copies are out there
/ill have to be used by incentives
M Users will have to rermove when they destroy the cpu
\O encryptedSecrets: Map=Party Secret=

M End users pick one or multiple nodes from this list to submit transactions to

Since the Aggregators producing and submitting rollups are a decentralised network

e support forks in case multiple Aggregators submit simultaneausly
Orin case someone who hacks an enclave submits an invalid rollup that has to be ignored
If an Aggregatoris able to break the TEE - one fork could be malicious

A compliant Aggregator will always agaregate on the most recent valid fork
In case there are multiple valid candidates - it will use the rollup with the lowest nonce
Aggregating on top of an invalid fork will result in full slashing of the deposit
Submitting out of order blocks should be discouraged as it costs ethereum gas and partial slashing
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This diagram shows the data structure for the rollup and withdrawal:

-

ObscuroRollup

/| Hash of the parent rollup
O parentHash: Hash

/{ The number of ancestor blocks
O generatien: Int

O timestamp: Timestamp

!/ Used to make sure that deposits are in sync with the L1 transfers
This value is produced by the en from the incoming deposit transactions
nforced by the MC when the block is submitted to L1

The dependency has to be an ancestor of the current L1 block that is being mined
O |1BlockDependency: L1BlockHash

/{ Number of transactions included in this block
O numTransactions: Int

[/ The root hash of the transactions included in this block organised as a MTree
O transactionsRoot: Hash

nsactions

!/ The list of encrypted L2 tra
/{ This is stored as "calldata
O transactionsRoot: List<EncryptedTransaction>

[/ The root hash of the receipts of each transaction
O receiptsRoot: Hash

// Root hash of a state Patricia MTree constructed by the aggregator
/{ Same datastructure as Ethereum
O stateRoot: Hash

TODOIDo we need this?)
u] logsBloom: BloomFilter

!/ The pub key of the a ator who submitted
[/ Must be part of the stakers. And must be the signer
O aggregator: Aggregatoridentity

| Some of the tra tions in the rollup will be with al requests from users
[/ The enclave will add these to this list in an unencrypted form to be used by the L1 Ma
TODOIthis is a sidechannel. }
/! We could use something like the submarine technigue and disclose withdra
0O withdrawals: List<Withdrawal>

gement Contract

wals with a delay

/| Random stuff relating to this rollup
O extraData: ByteArray

/ h of the L1 bleck where the ent was published
[/ This is required because the POBI protocol dictates that a rollup can only be generated after the parent rollup was published in a L1 block
O L1ParentBlock: Hash

a nonce generated by the TEE
trusted lottery system to determine a

r sequencing

( Withdrawal ]

!/ 1tis part of a rollup in |
Processed by the L1 M
accoerding to the compl

ment contract
x withdraw logic

O recipient: Address
O amount: Amount [value, asset]

This diagram shows the data structure for the transactions and account:

' -
Transaction )

/{ This is the transaction sent by users
/i Same as in Ethereum because we want to support the same model
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( signedObscuroRollup )

O rollup: ObscuroRellup
O hashOfRollup: Hash
O signatureOfTEE: Signature

!/ Prevent repla tacks r

TransactionReceipt )

O nonce: Int ( EncryptedTransaction ]

N Sa
/[ Either a user or a contract L |/ The object that is included in the RcllupJ

O to: Address /! Includes the signature

/! How much to transfer in Obscuro tokens 0 encryptedBytes: ByteArray

O value: Long ol

/| For new deployment of contract it is the bytecod
For execution of contract function it contains the function signature and the encoded arguments
It is left empty in fund transfer

\ O data: Bytes J
g N\
Account
|/ Same as in Ethereum because we want to support the same model
{1 Number of transactions sent from this address r LogEntry w
O nonce: Int

// Same as in Ethereum to support the same model

/! Number of Obscuro tokens owned by this address .
O address: Address

O balance: Int
O topics: List<Topic>
/! Root hash of atricia MTree enceding the content O data: ByteArra

O storageRoot: Ha

// Hash of the code in case this account represent a contract
codeHash: Hash J

Design Alternatives
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This section describes alternatives considered and discarded.
Alternative L1 Deposit management

On a high level, a user has to deposit ERC tokens on the L1 Management Contract, and the same amount
has to be credited to the user's account on TEN. This is not straightforward since finality is probabilistic.
One option to achieve this is to wait a number of L1 blocks for confirmation. This has some clear
disadvantages.

Another option is to introduce a dependency mechanism between the L2 rollup and the L1 blocks. Basically,
the L2 transaction that credits the TEN account will be in an L2 rollup that will only be accepted by the
Management Contract if the dependency is part of the ancestors of the current block. This option is
discarded because in the case where the L1 deposit gets reorganised away before the rollup is created, the
rollup which contains the L2 deposit transaction is invalidated.

Alternative L1 Theft Prevention

There is a pool of liquidity stored in the L1 Bridge contract, which is controlled by the group of TEEs who
maintain the encrypted ledger of ownership. Some users will want to withdraw from the L2 and go back to
L1, which means the Management Contract will have to allow them to claim money from the liquidity pool.

In case one of the Aggregators is able to hack the TEE, they will be able to produce a proof that they own
much more and thus run with it.

To solve this we have a couple of options. We could organise the Aggregators in a BFT setup, and require
that 2/3 of them sign over each rollup. The major disadvantage with this approach is that the finality of an
L2 transaction will depend on both the BFT finality and the L1 finality. Another disadvantage is that a
determined hacker with the means to break secure hardware could also amass the majority of staking
power and be unchallenged.

Another option with a better trust model is to introduce a challenge mechanism similar to the optimistic
rollups. The disadvantage is that it introduces a delay, and a concept of probabilistic finality.

The data structure containing the rollups is a chain that can have multiple heads. The Management
Contract cannot evaluate which one is correct because it cannot execute the transactions inside. But there
are some simple rules that can be applied. For example, if a branch does not progress for N blocks it is
considered dead. If at the moment of withdrawal there is only a single active head rollup, then all the system
has to do is wait for a reasonable number of blocks (20-50) to ensure that there is no censorship attempt
on L1. If there is a fork, then the number of blocks has to be increased to allow one of the forks to die out
naturally. If it does not then all withdrawals will be locked, and the contract will enter a special procedure.

Alternative Revelation Options

The solution will reveal all transactions after one year through a key-rotation process. An alternative policy
could be to specify a ratio of transactions (e.g. 1%) are revealed either immediately or subsequently. lllegal
transaction detection then becomes risk-based, but the ratio cannot be high enough to be a disincentive
and yet still provide utility.

Alternative Nonce Generation
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The Aggregator host must not be able to repeatedly submit the rollup proof to the TEE to get a new random
nonce, and thus achieve a low nonce in order to win the Aggregator selection round. Monotonic counters
were considered but an alternative is to make the nonce deterministic. The nonce is deterministically
derived from the L1 block hash combined with the public key of the enclave. This achieves the same
purpose of being a fair lottery assuming there is no collusion between L1 miners and L2 Aggregators. Even if
there was collusion, the cost of gaming the L1 hash might be too high in a proof of work network. In a Proof
of Stake network, on the other hand, collusion with L1 would pretty much mean that each round the L1
winner will also win the L2 round.

Alternative Privacy Revelation

There are several options for revealing private data to allow law enforcement agencies to prosecute illegal
behaviour and deter criminals from taking advantage of TEN's privacy features:

¢ Not make a provision to reveal on the basis that TEN is a platform and is un-opinionated on what it is
used for.

e The transaction encryption key can be rotated and revealed periodically with a delay, such that any
interested party can view all transactions. This is the solution we chose, but with some application-
level flexibility.

e A governance committee can approve some data mining enclaves that will have access to the shared
secret and output suspicious activity.

From the outset TEN will rotate the encryption key every year and reveal historic keys in the first phase, and
decide later if additional mechanisms are required. A case-by-case revelation based on authority demands
is time-consuming and prone to political interference. It is also difficult to determine objectively what is a
bona-fide authority which introduces a political dilemma.

[Page history] ({{ site.github.repository_url }}/blame/main/{{page.path}})

37137



